Treffer: A Multilevel Stochastic Approximation Algorithm for Value-at-Risk and Expected Shortfall Estimation

Title:
A Multilevel Stochastic Approximation Algorithm for Value-at-Risk and Expected Shortfall Estimation
Contributors:
Laboratoire de Probabilités, Statistique et Modélisation (LPSM (UMR_8001)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Centre d'économie de la Sorbonne (CES), Université Paris 1 Panthéon-Sorbonne (UP1)-Centre National de la Recherche Scientifique (CNRS), The research of S. Crépey has benefited from the support of the Chair Capital Markets Tomorrow: Modeling and Computational Issues under the aegis of the Institut Europlace de Finance, a joint initiative of Laboratoire de Probabilités, Statistique et Modélisation (LPSM) / Université Paris Cité and Crédit Agricole CIB.The research of N. Frikha has benefited from the support of the Institut Europlace de Finance.
Source:
ISSN: 0949-2984.
Publisher Information:
CCSD
Springer Verlag (Germany)
Publication Year:
2025
Document Type:
Fachzeitschrift article in journal/newspaper
Language:
English
Relation:
info:eu-repo/semantics/altIdentifier/arxiv/2304.01207; ARXIV: 2304.01207
DOI:
10.1007/s00780-025-00573-5
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edsbas.80EB5D75
Database:
BASE

Weitere Informationen

International audience ; We propose a multilevel stochastic approximation (MLSA) scheme for the computation of the value-at-risk (VaR) and expected shortfall (ES) of a financial loss, which can only be computed via simulations conditional on the realization of future risk factors. Thus, the problem of estimating its VaR and ES is nested in nature and can be viewed as an instance of stochastic approximation problems with biased innovations. In this framework, for a prescribed accuracy $\varepsilon$, the optimal complexity of a nested stochastic approximation algorithm is shown to be of order $\varepsilon^{-3}$. To estimate the VaR, our MLSA algorithm attains an optimal complexity of order $\varepsilon^{-2-\delta}$ , where $\delta<1$ is some parameter depending on the integrability degree of the loss, while to estimate the ES, it achieves an optimal complexity of order $\varepsilon^{-2}|\ln{\varepsilon}|^2$. Numerical studies of the joint evolution of the error rate and the execution time demonstrate how our MLSA algorithm regains a significant amount of the performance lost due to the nested nature of the problem.