Treffer: A Comprehensive Review on Automated Grading Systems in STEM Using AI Techniques.

Title:
A Comprehensive Review on Automated Grading Systems in STEM Using AI Techniques.
Source:
Mathematics (2227-7390); Sep2025, Vol. 13 Issue 17, p2828, 23p
Database:
Complementary Index

Weitere Informationen

This paper presents a comprehensive analysis of artificial intelligence-powered automated grading systems (AI AGSs) in STEM education, systematically examining their algorithmic foundations, mathematical modeling approaches, and quantitative evaluation methodologies. AI AGSs enhance grading efficiency by providing large-scale, instant feedback and reducing educators' workloads. Compared to traditional manual grading, these systems improve consistency and scalability, supporting a wide range of assessment types, from programming assignments to open-ended responses. This paper provides a structured taxonomy of AI techniques including logistic regression, decision trees, support vector machines, convolutional neural networks, transformers, and generative models, analyzing their mathematical formulations and performance characteristics. It further examines critical challenges, such as user trust issues, potential biases, and students' over-reliance on automated feedback, alongside quantitative evaluation using precision, recall, F1-score, and Cohen's Kappa metrics. The analysis includes feature engineering strategies for diverse educational data types and prompt engineering methodologies for large language models. Lastly, we highlight emerging trends, including explainable AI and multimodal assessment systems, offering educators and researchers a mathematical foundation for understanding and implementing AI AGSs into educational practices. [ABSTRACT FROM AUTHOR]

Copyright of Mathematics (2227-7390) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)