Treffer: The Modeling of Post-Annealing and Etching Processes of ALD SiO₂ Using Intermediate Variables Considering Digital Twin Model Reusability.
Weitere Informationen
In this study, we examined a digital twin model that has multiple processes. Generally, previous processes affect subsequent processes in the semiconductor manufacturing process. Therefore, to construct reusable modular models, the mutual influences between processes should be defined and concisely represented. We built a digital twin model involving the post-annealing and wet etching of an oxide film formed by atomic layer deposition (ALD), as a case study. We developed a modular model that separated processes based on intermediate variables extracted through physical analysis. The high coefficient of determination obtained from the prediction results suggests that these intermediate variables sufficiently captured the effect of the preceding processes. Further, we explored concepts for improving model reusability using class structure analysis within an object-oriented programming (OOP) framework. We observed the need for encapsulating physics-based intermediate variables within appropriate classes to separate process- and device-specific descriptions. The encapsulated intermediate variables indirectly represented process influence and enabled the modularization of class-internal models. These findings help in reducing dependencies between models, thereby contributing to improved model reusability. [ABSTRACT FROM AUTHOR]
Copyright of IEEE Transactions on Semiconductor Manufacturing is the property of IEEE and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)