Vom 20.12.2025 bis 11.01.2026 ist die Universitätsbibliothek geschlossen. Ab dem 12.01.2026 gelten wieder die regulären Öffnungszeiten. Ausnahme: Medizinische Hauptbibliothek und Zentralbibliothek sind bereits ab 05.01.2026 wieder geöffnet. Weitere Informationen

Treffer: Measuring Undergraduates' Motivation Levels When Learning to Program in Virtual Worlds.

Title:
Measuring Undergraduates' Motivation Levels When Learning to Program in Virtual Worlds.
Source:
Computers (2073-431X); Aug2024, Vol. 13 Issue 8, p188, 22p
Database:
Complementary Index

Weitere Informationen

Teaching/learning programming is complex, and conventional classes often fail to arouse students' motivation in this discipline. Therefore, teachers should look for alternative methods for teaching programming. Information and communication technologies (ICTs) can be a valuable alternative, especially virtual worlds. This study measures the students' motivation level when using virtual worlds to learn introductory programming skills. Moreover, a comparison is conducted regarding their motivation levels when students learn in a traditional teaching setting. In this study, first-semester university students participated in a pedagogical experiment regarding the learning of the programming subject employing virtual worlds. A pre-test-post-test design was carried out. In the pre-test, 102 students participated, and the motivation level when a professor taught in a traditional modality was measured. Then, a post-test was applied to 60 students learning in virtual worlds. With this research, we have found that the activity conducted with virtual worlds presents higher motivation levels than traditional learning with the teacher. Moreover, regarding gender, women present higher confidence than men. We recommend that teachers try this innovation with their students based on our findings. However, teachers must design a didactic model to integrate virtual worlds into daily teaching activities. [ABSTRACT FROM AUTHOR]

Copyright of Computers (2073-431X) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)