ISO-690 (author-date, English)

BHATT, Viral, PANDEY, Sudhir, PATEL, Ritesh, GHODAKE, Shamrao, JARIWALA, Harsha und THOMAS, Sujo, 2025. Predicting online donation intention in donation-based crowdfunding apps: a multi-stage SEM-ANN-NCA model integrating anthropomorphism, satisfaction, trust, and privacy concerns. Journal of Nonprofit & Public Sector Marketing. 1 Januar 2025. Vol. 37, no. 1, p. 80-104. DOI 10.1080/10495142.2024.2351012.

Elsevier - Harvard (with titles)

Bhatt, V., Pandey, S., Patel, R., Ghodake, S., Jariwala, H., Thomas, S., 2025. Predicting online donation intention in donation-based crowdfunding apps: a multi-stage SEM-ANN-NCA model integrating anthropomorphism, satisfaction, trust, and privacy concerns. Journal of Nonprofit & Public Sector Marketing 37, 80-104. https://doi.org/10.1080/10495142.2024.2351012

American Psychological Association 7th edition

Bhatt, V., Pandey, S., Patel, R., Ghodake, S., Jariwala, H., & Thomas, S. (2025). Predicting online donation intention in donation-based crowdfunding apps: a multi-stage SEM-ANN-NCA model integrating anthropomorphism, satisfaction, trust, and privacy concerns. Journal of Nonprofit & Public Sector Marketing, 37(1), 80-104. https://doi.org/10.1080/10495142.2024.2351012

Springer - Basic (author-date)

Bhatt V, Pandey S, Patel R, Ghodake S, Jariwala H, Thomas S (2025) Predicting online donation intention in donation-based crowdfunding apps: a multi-stage SEM-ANN-NCA model integrating anthropomorphism, satisfaction, trust, and privacy concerns.. Journal of Nonprofit & Public Sector Marketing 37:80-104. https://doi.org/10.1080/10495142.2024.2351012

Juristische Zitierweise (Stüber) (Deutsch)

Bhatt, Viral/ Pandey, Sudhir/ Patel, Ritesh/ Ghodake, Shamrao/ Jariwala, Harsha/ Thomas, Sujo, Predicting online donation intention in donation-based crowdfunding apps: a multi-stage SEM-ANN-NCA model integrating anthropomorphism, satisfaction, trust, and privacy concerns., Journal of Nonprofit & Public Sector Marketing 2025, 80-104.

Bitte prüfen Sie die Zitate auf Korrektheit, bevor Sie diese in Ihre Arbeit einfügen.