ISO-690 (author-date, English)

ROTH, Maximilian, AVEMARIE, Georg und RINDERKNECHT, Stephan, 2022. A Comprehensive Approach for an Approximative Integration of Nonlinear-Bivariate Functions in Mixed-Integer Linear Programming Models. Mathematics. 2022. No. Band 10, Heft 13 (2022), Artikel-ID: 2226, p. , Heft 13 (2022), Artikel-ID: 2226. DOI 10.3390/math10132226.

Elsevier - Harvard (with titles)

Roth, M., Avemarie, G., Rinderknecht, S., 2022. A Comprehensive Approach for an Approximative Integration of Nonlinear-Bivariate Functions in Mixed-Integer Linear Programming Models. Mathematics , Heft 13 (2022), Artikel-ID: 2226. https://doi.org/10.3390/math10132226

American Psychological Association 7th edition

Roth, M., Avemarie, G., & Rinderknecht, S. (ca. 2022). A Comprehensive Approach for an Approximative Integration of Nonlinear-Bivariate Functions in Mixed-Integer Linear Programming Models [Electronic]. Mathematics, Band 10, Heft 13 (2022), Artikel-ID: 2226, , Heft 13 (2022), Artikel-ID: 2226. https://doi.org/10.3390/math10132226

Springer - Basic (author-date)

Roth M, Avemarie G, Rinderknecht S (2022) A Comprehensive Approach for an Approximative Integration of Nonlinear-Bivariate Functions in Mixed-Integer Linear Programming Models. Mathematics , Heft 13 (2022), Artikel-ID: 2226. https://doi.org/10.3390/math10132226

Juristische Zitierweise (Stüber) (Deutsch)

Roth, Maximilian/ Avemarie, Georg/ Rinderknecht, Stephan, A Comprehensive Approach for an Approximative Integration of Nonlinear-Bivariate Functions in Mixed-Integer Linear Programming Models, Mathematics 2022, , Heft 13 (2022), Artikel-ID: 2226.

Bitte prüfen Sie die Zitate auf Korrektheit, bevor Sie diese in Ihre Arbeit einfügen.