Vom 20.12.2025 bis 11.01.2026 ist die Universitätsbibliothek geschlossen. Ab dem 12.01.2026 gelten wieder die regulären Öffnungszeiten. Ausnahme: Medizinische Hauptbibliothek und Zentralbibliothek sind bereits ab 05.01.2026 wieder geöffnet. Weitere Informationen

Treffer: Trust in Automation and the Accuracy of Human-Algorithm Teams Performing One-to-One Face Matching Tasks

Title:
Trust in Automation and the Accuracy of Human-Algorithm Teams Performing One-to-One Face Matching Tasks
Language:
English
Authors:
Source:
Cognitive Research: Principles and Implications. 2024 9.
Availability:
Springer. Available from: Springer Nature. One New York Plaza, Suite 4600, New York, NY 10004. Tel: 800-777-4643; Tel: 212-460-1500; Fax: 212-460-1700; e-mail: customerservice@springernature.com; Web site: https://link.springer.com/
Peer Reviewed:
Y
Page Count:
17
Publication Date:
2024
Document Type:
Fachzeitschrift Journal Articles<br />Reports - Research
DOI:
10.1186/s41235-024-00564-8
ISSN:
2365-7464
Entry Date:
2024
Accession Number:
EJ1428598
Database:
ERIC

Weitere Informationen

The human face is commonly used for identity verification. While this task was once exclusively performed by humans, technological advancements have seen automated facial recognition systems (AFRS) integrated into many identification scenarios. Although many state-of-the-art AFRS are exceptionally accurate, they often require human oversight or involvement, such that a human operator actions the final decision. Previously, we have shown that on average, humans assisted by a simulated AFRS (sAFRS) failed to reach the level of accuracy achieved by the same sAFRS alone, due to overturning the system's correct decisions and/or failing to correct sAFRS errors. The aim of the current study was to investigate whether participants' trust in automation was related to their performance on a one-to-one face matching task when assisted by a sAFRS. Participants (n = 160) completed a standard face matching task in two phases: an unassisted baseline phase, and an assisted phase where they were shown the identification decision (95% accurate) made by a sAFRS prior to submitting their own decision. While most participants improved with sAFRS assistance, those with greater relative trust in automation achieved larger gains in performance. However, the average aided performance of participants still failed to reach that of the sAFRS alone, regardless of trust status. Nonetheless, further analysis revealed a small sample of participants who achieved 100% accuracy when aided by the sAFRS. Our results speak to the importance of considering individual differences when selecting employees for roles requiring human-algorithm interaction, including identity verification tasks that incorporate facial recognition technologies.

As Provided