Vom 20.12.2025 bis 11.01.2026 ist die Universitätsbibliothek geschlossen. Ab dem 12.01.2026 gelten wieder die regulären Öffnungszeiten. Ausnahme: Medizinische Hauptbibliothek und Zentralbibliothek sind bereits ab 05.01.2026 wieder geöffnet. Weitere Informationen

Treffer: Computación Evolutiva Descentralizada de Modelo Híbrido usando Blockchain y Prueba de Trabajo de Optimización

Title:
Computación Evolutiva Descentralizada de Modelo Híbrido usando Blockchain y Prueba de Trabajo de Optimización
Source:
K. Stanley, "Evolving Neural Networks through Augmenting Topologies," Evolutionary Computation, vol. 10 , no. 2, pp. 99-127 , 2002.; L. Wu, "Magnetic Resonance Brain Image Classification by an Improved Artificial Bee Colony Algorithm," Progress in Electromagnetics Research, vol. 116, pp. 65-79 , 2011.; J. Kennedy and R. Eberhart, "Particle Swarm Optimization," in Proceedings of IEEE International Conference on Neural Networks, 1995.; M. Wa, "Genetic Algorithm and its application to Big Data Analysis," International Journal of Scientific & Engineering Research,, vol. 5, no. 1, 2014.; P. Verbancsics, "Classifying Maritime Vessels from Satellite Imagery with HyperNEAT," in Proceedings of the Companion Publication of the 2015 on Genetic and Evolutionary Computation Conference - GECCO Companion, New York, USA, 2015.; Y.-J. Gong, "Distributed evolutionary algorithms and their models: A survey of the state-of-the-art.," Applied Soft Computing, 2015.; J. Lienig, "A parallel genetic algorithm for performance-driven VLSI routing," IEEE Trans. Evol. Comput, vol. 1, no. 1, pp. 29-39, 1997.; H. Piereval, "Distributed evolutionary algorithms for simulation optimization," IEEE Trans Sys. Man. Cybern. , vol. 30, no. 1, pp. 15-24, 2000.; K.C.Tan, "Automating the drug-sheduling of cancer chemotherapy via evolutionary computation," Artif.Intellig.Med., vol. 25, no. 2, pp. 169-185, 2002.; J. Creput, "Automatic mesh generation for mobile network dimensioning using evolutionary approach," Evol.Comput, vol. 9, no. 1, pp. 18-30, 2005.; J.Liu, "An evolutionary autonomous agents approach to image feature extraction.," IEEE Trans. Evol. Comput., vol. 1, no. 2, pp. 141-158, 1997.; M. Epitropakis, "Hardware-friendly higher-order neural network training using distributed evolutionary algorithms.," Appl. Soft. comput. , vol. 10, no. 2, pp. 398-408, 2010.; L. Kattan, "Distributed evolutionary estimation of of dynamic traffic origin/destination," in 13th IEEE Conference on Intelligent Transport Systems, 2010.; J. Noyima, "Ensemble classifier design by parallel implementation of genetic fuzzy rule selection for large datasets.," in IEEE Congress on Evolutionary Computation, 2010.; F. Rainville, "DEAP: A Python Framework for Evolutionary Algorithms," in GECCO, 2012.; M. Linder, "Grid computing in Matlab for solving evolutionary algorithms," in Technical Computing Bratislava, Bratislava, 2012.; J. Kennedy and R. Eberhart, "Particle Swarm Optimization," in Proceedings of IEEE International Conference on Neural Networks. , 1995.; D. D. Karaboga, "An Idea Based On Honey Bee Swarm for Numerical Optimization," Erciyes University, 2005.; M. Dorigo, "Distributed Optimization by Ant Colonies," in Première conférence européenne sur la vie artificielle, Paris, France, 1991.; C. Huang, "A hybrid stock selection model using genetic algorithms and support vector regression," Applied Soft Computing, vol. 12, p. 807–81, 2012.; E. Levy, "Genetic algorithms and deep learning for automatic painter classification," in conference on Genetic and evolutionary computation - GECCO ’14 , New York, New York, USA, 2014.; E. Levy, "Genetic algorithms and deep learning for automatic painter classification," in Proceedings of the 2014 conference on Genetic and evolutionary computation - GECCO ’14 , New York, New York, USA, 2014.; S. Whiteson, "Evolutionary Function Approximation for Reinforcement Learning," Journal of Machine Learning Research, vol. 8, pp. 877-917, 2006.; R. B. Greve, "Evolving Neural Turing Machines for Reward-based Learning," in Genetic and Evolutionary Computation Conference (GECCO), Denver, Colorado, USA, 2016.; A. Santoro, "One-shot Learning with Memory-Augmented Neural Networks," Cornell University , Ithaca, NY, USA, 2016.; D. Izzo, "The generalized isalnd model," Studies in Computational Intelligence, vol. 415, pp. 151-169, 2012.; G. Folino, "P-CAGE: An Environment for Evolutionary Computation in Peer-to-Peer Systems," in European Conference on Genetic Programming, Berlin, 2006.; A. L. Ian Scriven, "Decentralised distributed multiple objective particle swarm optimisation using peer to peer networks," in IEEE World Congress on Evolutionary Computation, 2008. CEC 2008, 2008.; A. L. C. Fernando Silva, "odNEAT: An Algorithm for Decentralised Online Evolution of Robotic Controllers," Evolutionary Computation , vol. 23, no. 3, pp. 421-449, 2015.; D. Jakobović, "ECF - Evolutionary Computation Framework," University of Zagreb,; M. A. García-Sánchez P., "A Methodology to Develop Service Oriented Evolutionary Algorithms," Intelligent Distributed Computing VIII, vol. 570, 2015.; S. Cahon, "ParadisEO: A Framework for the Reusable Design of Parallel and Distributed Metaheuristics," Journal of Heuristics, vol. 10, no. 3, pp. 357-380, 2004.; D. R. White, "Software review: the ECJ toolkit," Genetic Programming and Evolvable Machines, vol. 13, no. 1, pp. 65-67, 2011.; M. G. Arenas, "A Framework for Distributed Evolutionary Algorithms," Lecture Notes on Computer Science, vol. 2439, pp. 665-675, 2002.; J. L. J. Laredo, "Resilience to churn of a peer-to-peer evolutionary algorithm," International Journal of High Performance Systems Architecture, vol. 1, no. 4, pp. 260-268, 2008.; C. Rohrs, "Query Routing for the Gnutella Network," Lime Wire LLC, 2002.; R. Fielding, "Chapter 5: Representational State Transfer (REST)," in Architectural Styles and the Design of Network-based Software Architectures, Irvine, Ca, University of California, 2000.; P. C. R. K. Len Bass, Software Architecture in Practice - Second Edition, Addison Wesley, 2003.; S. Nakamoto, "Bitcoin: A Peer-to-Peer Electronic Cash Syste," bitcoin.org, vol. Retrieved 28 April 2016.; H. C. M. Kalodner, "An empirical study of Namecoin and lessons for decentralized namespace design," in Workshop on the oconomics of information security, Delft, The Netherlands, 2015.; D. Carboni, "Feedback based Reputation on top of the Bitcoin Blockchain," Retrieved from; E. Foundation, "Ethereum's white paper," Ethereum Foundation, 2014.; G. N. O. Zyskind, "Decentralizing Privacy: Using Blockchain to Protect Personal Data," IEEE Security and Privacy Workshops , p. 180–184, 2015.; S. Nakamoto, "Bitcoin: A Peer-to-Peer Electronic Cash System," in Web. bitcoin.org. Retrieved 28 April 2014, 2008.; S. King, "Primecoin: Cryptocurrency with Prime Number Proof-of-Work," 2013 .; A. R. Marshall Ball, "Proofs of Useful Work," Cryptology ePrint Archive, 2017.; R. A. G. Barto, Reinforcement Learning: An Introduction, Cambridge, Massachusetts: The MIT Press, 2005.; M. S. J. Moody, "Learning to trade via direct reinforcement," IEEE Transactions on Neural Networks, vol. 12, no. 4,, 2001; C. WATKINS, "Q,-Learning," Machine Learning, vol. 8, 1992.; R. M. Kenneth O. Stanley, "Efficient Reinforcement Learning through Evolving Neural Network Topologies," in Genetic and Evolutionary Computation Conference , San Francisco, CA, 2002.; C. Igel, "Neuroevolution for reinforcement learning using evolution strategies," in Congress on Evolutionary Computation, 2003.; V. Heidrich-Meisner, "Neuroevolution strategies for episodic reinforcement learning," Journal of Algorithms, vol. 64, no. 4, pp. 152-168, 2009.; D. Lessin, "Open-ended behavioral complexity for evolved virtual creatures," in 15th annual conference on Genetic and evolutionary computation, Amsterdam, The Netherlands, 2013.; G. B. a. V. Cheung, "OpenAI Gym," Arxiv, vol. arXiv:1606.01540, 2016.; N. G. L. Iker Zamora, "Extending the OpenAI Gym for robotics: a toolkit for reinforcement learning using ROS and Gazebo," Whitepaper, 2016.; A. H. David Silver, "Mastering the game of Go with deep neural networks and tree 62 search," Nature, vol. 529, no. 7587, pp. 484-489, 2016.; K. K. Volodymyr Mnih, "Human-level control through deep reinforcement learning," Nature, vol. 518, no. 7540, pp. 529-533, 2015.; U. B. o. E. Analysis, "U.S. INTERNATIONAL TRADE IN GOODS AND SERVICES - December 2013," U.S. Department of Commerce, Washington, DC 20230, 2013.; E. Department, "Triennial Central Bank Survey of foreign exchange and OTC derivatives markets in 2016," Bank For International Settlements, Basel, Switzerland,; Investopedia, "Forex Broker Definition,"; Investopedia, "Margin Call Definition,"; Investopedia, "What is a Spread,"; Investopedia, "Leverage Definition,"; A. P. CHABOUD, "Rise of the Machines: Algorithmic Trading in the Foreign Exchange Market," Journal of the American Finance Association, vol. 69, no. 5, p. 2045–2084 , 201.; M. A. H. Dempster, "An automated FX trading system using adaptive reinforcement learning," Expert Systems with Applications, vol. 30, no. 3, pp. 543-552, 2006.; HistData.com, "Free Forex Historical Data Repository,"; R. T. Fielding, "Chapter 5: Representational State Transfer (REST)," in Architectural Styles and the Design of Network-based Software Architectures, Irvine, University of California, 2000.; H. W. Group, " SOAP: Simple Object Access Protocol," [Online]. Available:; e. a. Don Box, "Simple Object Access Protocol (SOAP) 1.1," W3C, 8 May 2000. [Online]. Available:; J.-R. W. Group, "JSON-RPC 2.0 Specification," JSON-RPC Working Group, 04 01 2013. [Online]. Available:; R. Mikkulainen and J. e. a. Liang, "Evolving Deep Neural Netwokrs," eprint arXiv:1703.00548, 2017.; Reponame:Vitela: Repositorio Institucional PUJ; Instname:Pontificia Universidad Javeriana Cali
Publisher Information:
Pontificia Universidad Javeriana Ingeniería Maestría en ingeniería con énfasis en Ingeniería de Sistemas y Computación 2018-01 2018-10-24T15:09:00Z 2018-10-24T15:09:00Z
Document Type:
E-Ressource Electronic Resource
Availability:
Open access content. Open access content
El o los autores otorgan licencia de uso parcial de la obra a favor de la Pontificia Universidad Javeriana Seccional Cali, teniendo en cuenta que en cualquier caso, la finalidad perseguida siempre será facilitar, difundir y promover el aprendizaje, la enseñanza y la investigación. Con la licencia el o los autores autorizan a la Pontificia Universidad Javeriana Seccional Cali: la publicación en formato o soporte material, de acuerdo con las condiciones internas que la Universidad ha establecido para estos efectos. La edición o cualquier otra forma de reproducción, incluyendo la posibilidad de trasladarla al sistema o entorno digital. La inclusión en cualquier otro formato o soporte como multimedia, colecciones, recopilaciones o, en general, servir de base para cualquier otra obra derivada. La comunicación y difusión al público por cualquier procedimiento o medio (impreso o electrónico). La inclusión en bases de datos y en sitios web, sean éstos onerosos o gratuitos, existiendo con ellos previo convenio perfeccionado con la Pontificia Universidad Javeriana Cali para efectos de satisfacer los fines previstos. En estos eventos, tales sitios tendrán las mismas facultades que las aquí concedidas para la referida universidad, con las mismas limitaciones y condiciones. El o los autores continúan conservando los correspondientes derechos sin modificación o restricción alguna, puesto que de acuerdo con la legislación colombiana aplicable, el acuerdo jurídico con la Pontificia Universidad Javeriana Cali, en ningún caso conlleva la enajenación del derecho de autor y de sus conexos. EL AUTOR, expresa que el artículo, folleto o libro objeto de la presente autorización es original y la elaboró sin quebrantar ni suplantar los derechos de autor de terceros, y de tal forma, el recurso electrónico aquí presentado es de su exclusiva autoría y tiene la titularidad sobre éste. PARÁGRAFO: en caso de queja o acción por parte de un tercero referente a los derechos de autor sobre el recurso
http://creativecommons.org/licenses/by-nc-nd/2.5/co
Acceso abierto
info:eu-repo/semantics/openAccess
Atribución-NoComercial-SinDerivadas 2.5 Colombia
Note:
Cali; Lat: 03 24 00 N degrees minutes; Lat: 3.4000 decimal degrees; Long: 076 30 00 W degrees minutes; Long: -76.5000 decimal degrees
application/pdf
72 páginas
Spanish
Other Numbers:
CKJAV oai:vitela.javerianacali.edu.co:11522/10811
Bastidas Caicedo, H. D. (2018, enero ) Computación Evolutiva Descentralizada de Modelo Híbrido usando Blockchain y Prueba de Trabajo de Optimización. Pontificia Universidad Javeriana, Cali.
1141245057
Contributing Source:
PONTIFICIA UNIVERSIDAD JAVERIANA CALI
From OAIster®, provided by the OCLC Cooperative.
Accession Number:
edsoai.on1141245057
Database:
OAIster

Weitere Informationen

Las técnicas de Computación Evolutiva (EC) como algoritmos genéticos, neuroevolución o swarm intelligence son métodos de optimización de parámetros de modelos matemáticos que se caracterizan por el uso de una población de soluciones candidatas que evolucionan en un espacio de búsqueda de una forma inspirada en los principios de la evolución biológica como la competencia, la selección o la reproducción. Existen varios modelos arquitecturales para implementar técnicas de EC en arquitecturas de procesamiento distribuido (dEC), los modelos con mejor tolerancia a fallas y menor costo comunicacional son los modelos híbridos basados en el modelo de Islas. Múltiples modelos para dEC se han implementado en frameworks o plataformas de software, pero las implementaciones encontradas tienen desventajas como que tienen baja tolerancia a fallas o les faltan mecanismos de trazabilidad que podrían ser deseables o necesarios para algunas aplicaciones. Para contrarrestar las desventajas mencionadas, el blockchain y la prueba de trabajo criptográfica (CPoW) son tecnologías para almacenar datos de trazabilidad de eventos en redes descentralizadas, pero con el requerimiento de una capacidad computacional adicional para la generación de una CPoW. En este documento se propone el uso de un blockchain con una prueba de trabajo de optimización (OPoW) para implementar un servicio de timestamping en una red descentralizada para optimización con dEC de modelos híbridos, usando para optimización la capacidad computacional que es usada para la generación de una prueba de trabajo criptográfica en otras redes basadas en blockchain como Bitcoin. El sacrificio de usar una prueba de trabajo útil es que la OPoW no es una función del contenido del bloque, sino solo del estado de optimización. Para la validación empírica de la OPoW, este documento describe el diseño de una plataforma de software descentralizada para implementar Algoritmos Evolutivos Distribuidos (dEA) utilizando el modelo de isla y los m
The Evolutionary Computation (EC) techniques such as genetic algorithms, neuroevolution or swarm intelligence are optimization methods characterized by using a population of candidate solutions that evolve in a search space in a way inspired by biological evolution principles like competition, selection or reproduction. There are several architectural models for implementing EC techniques in distributed processing architectures (dEC), the models with better fault tolerance and lower communicational cost are the hybrid models based on the so-called island model. Multiple models for dEC have been implemented in frameworks or software platforms, but the existing implementations are either programming language-specific, lack fault-tolerance or lack traceability features that could be desirable or required for some applications. For counteracting the mentioned disadvantages, the blockchain and the hash-based cryptographic proof-of-work (CPoW) are technologies that allow the storage of data for the traceability of events in a decentralized network, but with an additional computational capacity requirement for the generation of a CPoW. This document proposes the use of a blockchain with an optimization proof-of-work (OPoW) to implement a timestamping service in a decentralized network for dEC with hybrid models, using for optimization the computational capacity that is used for hash-based proof-of-work generation in other blockchain based networks like Bitcoin. The tradeoff of a useful proof of work is that the OPoW is not a function of the block contents but only of the optimization state. For the empirical validation of the proposed proof of work, this document describes the design of a decentralized software platform for implementing distributed Evolutionary Algorithms (dEA) using the island model and hybrid models. The proposed platform explores the use of a blockchain and an optimization proof-of-work to store a log of operations for traceability and synchronization o