Treffer: Genetic Programming for Automatically Synthesising Robust Image Descriptors with A Small Number of Instances : a thesis submitted to the Victoria University of Wellington in fulfilment of the requirements for the degree of Doctor of Philosophy in Computer Science
Victoria University of Wellington, degree granting institution.
En_NZ
988298026
Weitere Informationen
Image classification is a core task in many applications of computer vision, including object detection and recognition. It aims at analysing the visual content and automatically categorising a set of images into different groups. Performing image classification can largely be affected by the features used to perform this task. Extracting features from images is a challenging task due to the large search space size and practical requirements such as domain knowledge and human intervention. Human intervention is usually needed to identify a good set of keypoints (regions of interest), design a set of features to be extracted from those keypoints such as lines and corners, and develop a way to extract those features. Automating these tasks has great potential to dramatically decrease the time and cost, and may potentially improve the performance of the classification task. There are two well-recognised approaches in the literature to automate the processes of identifying keypoints and extracting image features. Designing a set of domain-independent features is the first approach, where the focus is on dividing the image into a number of predefined regions and extracting features from those regions. The second approach is synthesising a function or a set of functions to form an image descriptor that aims at automatically detecting a set of keypoints such as lines and corners, and performing feature extraction. Although employing image descriptors is more effective and very popular in the literature, designing those descriptors is a difficult task that in most cases requires domain-expert intervention. The overall goal of this thesis is to develop a new domain independent Genetic Programming (GP) approach to image classification by utilising GP to evolve programs that are capable of automatically detecting diverse and informative keypoints, designing a set of features, and performing feature extraction using only a small number of training instances to facilitate image classification, and are robust to different image changes such as illumination and rotation.