LUPO PASINI, Massimiliano, CHOI, Jong Youl, MEHTA, Kshitij, ZHANG, Pei, ROGERS, David, BAE, Jonghyun, IBRAHIM, Khaled Z, AJI, Ashwin M, SCHULZ, Karl W, POLO, Jordà und BALAPRAKASH, Prasanna, 2025. Scalable training of trustworthy and energy-efficient predictive graph foundation models for atomistic materials modeling: a case study with Hydra GNN. The Journal of Supercomputing, vol 81, iss 4. 1 Januar 2025. DOI 10.1007/s11227-025-07029-9.
Elsevier - Harvard (with titles)Lupo Pasini, M., Choi, J.Y., Mehta, K., Zhang, P., Rogers, D., Bae, J., Ibrahim, K.Z., Aji, A.M., Schulz, K.W., Polo, J., Balaprakash, P., 2025. Scalable training of trustworthy and energy-efficient predictive graph foundation models for atomistic materials modeling: a case study with Hydra GNN. The Journal of Supercomputing, vol 81, iss 4. https://doi.org/10.1007/s11227-025-07029-9
American Psychological Association 7th editionLupo Pasini, M., Choi, J. Y., Mehta, K., Zhang, P., Rogers, D., Bae, J., Ibrahim, K. Z., Aji, A. M., Schulz, K. W., Polo, J., & Balaprakash, P. (2025). Scalable training of trustworthy and energy-efficient predictive graph foundation models for atomistic materials modeling: a case study with Hydra GNN. The Journal of Supercomputing, Vol 81, Iss 4. https://doi.org/10.1007/s11227-025-07029-9
Springer - Basic (author-date)Lupo Pasini M, Choi JY, Mehta K, Zhang P, Rogers D, Bae J, Ibrahim KZ, Aji AM, Schulz KW, Polo J, Balaprakash P (2025) Scalable training of trustworthy and energy-efficient predictive graph foundation models for atomistic materials modeling: a case study with Hydra GNN. The Journal of Supercomputing, vol 81, iss 4. https://doi.org/10.1007/s11227-025-07029-9
Juristische Zitierweise (Stüber) (Deutsch)Lupo Pasini, Massimiliano/ Choi, Jong Youl/ Mehta, Kshitij/ Zhang, Pei/ Rogers, David/ Bae, Jonghyun/ Ibrahim, Khaled Z/ Aji, Ashwin M/ Schulz, Karl W/ Polo, Jordà/ Balaprakash, Prasanna, Scalable training of trustworthy and energy-efficient predictive graph foundation models for atomistic materials modeling: a case study with Hydra GNN, The Journal of Supercomputing, vol 81, iss 4 2025.