ISO-690 (author-date, English)

SLAOUI, Yousri, JMAEI, Asma, LABORATOIRE DE MATHÉMATIQUES ET APPLICATIONS (LMA-POITIERS) und UNIVERSITÉ DE POITIERS-CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS), 2022. RECURSIVE AND NON-RECURSIVE REGRESSION ESTIMATORS USING BERNSTEIN POLYNOMIALS. ISSN: 0095-7380 ; Theory of Stochastic Processes ; https://univ-poitiers.hal.science/hal-04389574 ; Theory of Stochastic Processes, 2022, 26 (42), pp.60-95. 1 Januar 2022.

Elsevier - Harvard (with titles)

Slaoui, Y., Jmaei, A., Laboratoire de Mathématiques et Applications (LMA-Poitiers), Université de Poitiers-Centre National de la Recherche Scientifique (CNRS), 2022. RECURSIVE AND NON-RECURSIVE REGRESSION ESTIMATORS USING BERNSTEIN POLYNOMIALS. ISSN: 0095-7380 ; Theory of Stochastic Processes ; https://univ-poitiers.hal.science/hal-04389574 ; Theory of Stochastic Processes, 2022, 26 (42), pp.60-95.

American Psychological Association 7th edition

Slaoui, Y., Jmaei, A., Laboratoire de Mathématiques et Applications (LMA-Poitiers), & Université de Poitiers-Centre National de la Recherche Scientifique (CNRS). (2022). RECURSIVE AND NON-RECURSIVE REGRESSION ESTIMATORS USING BERNSTEIN POLYNOMIALS. ISSN: 0095-7380 ; Theory of Stochastic Processes ; https://univ-poitiers.hal.science/Hal-04389574 ; Theory of Stochastic Processes, 2022, 26 (42), pp.60-95.

Springer - Basic (author-date)

Slaoui Y, Jmaei A, Laboratoire de Mathématiques et Applications (LMA-Poitiers), Université de Poitiers-Centre National de la Recherche Scientifique (CNRS) (2022) RECURSIVE AND NON-RECURSIVE REGRESSION ESTIMATORS USING BERNSTEIN POLYNOMIALS. ISSN: 0095-7380 ; Theory of Stochastic Processes ; https://univ-poitiers.hal.science/hal-04389574 ; Theory of Stochastic Processes, 2022, 26 (42), pp.60-95

Juristische Zitierweise (Stüber) (Deutsch)

Slaoui, Yousri/ Jmaei, Asma/ Laboratoire de Mathématiques et Applications (LMA-Poitiers)/ Université de Poitiers-Centre National de la Recherche Scientifique (CNRS), RECURSIVE AND NON-RECURSIVE REGRESSION ESTIMATORS USING BERNSTEIN POLYNOMIALS, ISSN: 0095-7380 ; Theory of Stochastic Processes ; https://univ-poitiers.hal.science/hal-04389574 ; Theory of Stochastic Processes, 2022, 26 (42), pp.60-95 2022.

Bitte prüfen Sie die Zitate auf Korrektheit, bevor Sie diese in Ihre Arbeit einfügen.