ISO-690 (author-date, English)

AZHAR ALI KHAKED, NOBUYUKI OISHI, DANIEL ROGGEN und PAULA LAGO, 2025. In shift and in variance: assessing the robustness of HAR deep learning models against variability. . 1 Januar 2025.

Elsevier - Harvard (with titles)

Azhar Ali Khaked, Nobuyuki Oishi, Daniel Roggen, Paula Lago, 2025. In shift and in variance: assessing the robustness of HAR deep learning models against variability.

American Psychological Association 7th edition

Azhar Ali Khaked, Nobuyuki Oishi, Daniel Roggen, & Paula Lago. (2025). In shift and in variance: assessing the robustness of HAR deep learning models against variability.

Springer - Basic (author-date)

Azhar Ali Khaked, Nobuyuki Oishi, Daniel Roggen, Paula Lago (2025) In shift and in variance: assessing the robustness of HAR deep learning models against variability

Juristische Zitierweise (Stüber) (Deutsch)

Azhar Ali Khaked/ Nobuyuki Oishi/ Daniel Roggen/ Paula Lago, In shift and in variance: assessing the robustness of HAR deep learning models against variability, 2025.

Bitte prüfen Sie die Zitate auf Korrektheit, bevor Sie diese in Ihre Arbeit einfügen.