Treffer: A post-processing strategy for SVM learning from unbalanced data

Title:
A post-processing strategy for SVM learning from unbalanced data
Contributors:
Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya. GREC - Grup de Recerca en Enginyeria del Coneixement
Publication Year:
2011
Collection:
Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledge
Document Type:
Konferenz conference object
File Description:
6 p.; application/pdf
Language:
English
Relation:
Rights:
Open Access
Accession Number:
edsbas.E883E620
Database:
BASE

Weitere Informationen

Standard learning algorithms may perform poorly when learning from unbalanced datasets. Based on the Fisher’s discriminant analysis, a post-processing strategy is introduced to deal datasets with significant imbalance in the data distribution. A new bias is defined, which reduces skew towards the minority class. Empirical results from experiments for a learned SVM model on twelve UCI datasets indicates that the proposed solution improves the original SVM, and they also improve those reported when using a z-SVM, in terms of g-mean and sensitivity. ; Peer Reviewed ; Postprint (author’s final draft)