Treffer: The normalized Laplacian spectrum of subdivisions of a graph
Title:
The normalized Laplacian spectrum of subdivisions of a graph
Contributors:
Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions
Publication Year:
2016
Collection:
Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledge
Subject Terms:
Document Type:
Fachzeitschrift
article in journal/newspaper
File Description:
7 p.; application/pdf
Language:
English
Relation:
DOI:
10.1016/j.amc.2016.04.033
Rights:
Attribution-NonCommercial-NoDerivs 3.0 Spain ; http://creativecommons.org/licenses/by-nc-nd/3.0/es/ ; Open Access
Accession Number:
edsbas.DDC62159
Database:
BASE
Weitere Informationen
Determining and analyzing the spectra of graphs is an important and exciting research topic in mathematics science and theoretical computer science. The eigenvalues of the normalized Laplacian of a graph provide information on its structural properties and also on some relevant dynamical aspects, in particular those related to random walks. In this paper, we give the spectra of the normalized Laplacian of iterated subdivisions of simple connected graphs. As an example of application of these results we find the exact values of their multiplicative degree-Kirchhoff index, Kemeny's constant and number of spanning trees. ; Postprint (published version)