Acevedo, O., Rios, Y.Y., Duque, J., Gomez, E., García, L.: A software for simulating robot swarm aggregation. In: FigueroaGarcía, J.C., Franco, C., Díaz-Gutierrez, Y., Hernández-Pérez, G. (eds.) Applied Computer Sciences in Engineering, pp. 386–399. Springer, Cham (2022a); Acevedo, O., Rios, Y.Y., García, L., Narvaez, D.: A study of the Beeclust algorithm for robot swarm aggregation. In: 2022 IEEE International Conference on Machine Learning and Applied Network Technologies (ICMLANT), pp. 1–6 (2022b).
https://doi.org/10. 1109/ICMLANT56191.2022.9996514; Akopov, A.S., Beklaryan, L.A., Beklaryan, A.L.: Cluster-based optimization of an evacuation process using a parallel bi-objective real-coded genetic algorithm. Cybern. Inf. Technol. 20(3), 45–63 (2020); Al-Obaidy, M., Al-Azawi, R.: Cluster-based algorithm for energy optimization of swarmed robots using swarm intelligence. In: 2019 Sixth HCT Information Technology Trends (ITT), pp. 202–207. IEEE (2019); Amjadi, A.S., Raoufi, M., Turgut, A.E.: A self-adaptive landmarkbased aggregation method for robot swarms. Adapt. Behav. (2021).
https://doi.org/10.1177/1059712320985543; Arvin, F., Samsudin, K., Ramli, A.R., Bekravi, M.: Imitation of honeybee aggregation with collective behavior of swarm robots. Int. J. Comput. Intell. Syst. 4, 739–748 (2012).
https://doi.org/10.1080/ 18756891.2011.9727825; Arvin, F., Turgut, A.E., Bazyari, F., Arikan, K.B., Bellotto, N., Yue, S.: Cue-based aggregation with a mobile robot swarm: a novel fuzzy-based method. Adapt. Behav. 22, 189–206 (2014). https:// doi.org/10.1177/1059712314528009; Arvin, F., Turgut, A.E., Krajnik, T., Rahimi, S., Okay, I.E., Yue, S., Watson, S., Lennox, B.: Phi Clust: pheromone-based aggregation for robotic swarms. In: IEEE International Conference on Intelligent Robots and Systems, pp. 4288–4294 (2018).
https://doi.org/ 10.1109/IROS.2018.8593961; Bayindir, L.: A review of swarm robotics tasks. Neurocomputing 172, 292–321 (2016).
https://doi.org/10.1016/j.neucom.2015.05.116; Bodi, M., Thenius, R., Szopek, M., Schmickl, T., Crailsheim, K.: Interaction of robot swarms using the honeybee-inspired control algorithm BEECLUST. Math. Comput. Model. Dyn. Syst. 18, 87–100 (2012).
https://doi.org/10.1080/13873954.2011.601420; Duarte, M., Costa, V., Gomes, J., Rodrigues, T., Silva, F., Oliveira, S.M., Christensen, A.L.: Evolution of collective behaviors for a real swarm of aquatic surface robots. PLoS One 11(3), 0151834 (2016); Hamann, H.: Swarm robotics: a formal approach. Swarm Robotics: A Formal Approach (2018).
https://doi.org/10.1007/ 978-3-319-74528-2; Hamann, H., Schmickl, T., Wörn, H., Crailsheim, K.: Analysis of emergent symmetry breaking in collective decision making. Neural Comput. Appl. 21, 207–218 (2012); Hamann, H., Wörn, H., Crailsheim, K., Schmickl, T.: Spatial macroscopic models of a bio-inspired robotic swarm algorithm. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, pp. 1415–1420 (2008).
https://doi.org/10. 1109/IROS.2008.4651038; Kernbach, S., Thenius, R., Kernbach, O., Schmickl, T.: Re-embodiment of honeybee aggregation behavior in an artificial micro-robotic system. Adapt. Behav. 17, 237–259 (2009).
https://doi.org/10. 1177/1059712309104966; Ramroop, S., Arvin, F., Watson, S., Carrasco-Gomez, J., Lennox, B.: A bio-inspired aggregation with robot swarm using real and simulated mobile robots. In: Giuliani, M., Assaf, T., Giannaccini, M.E. (eds.) Towards Autonomous Robotic Systems, pp. 317–329. Springer, Cham (2018); Şahin, E.: Swarm robotics: from sources of inspiration to domains of application. In: Swarm Robotics, pp. 10–20. Springer, Berlin, Heidelberg (2005); Schmickl, T., Hamann, H., Worn, H., Crailsheim, K.: Two different approaches to a macroscopic model of a bio-inspired robotic swarm. Robot. Autonom. Syst. 57, 913–921 (2009a).
https://doi. org/10.1016/J.ROBOT.2009.06.002; Schmickl, T., Thenius, R., Moeslinger, C., Radspieler, G., Kernbach, S., Szymanski, M., Crailsheim, K.: Get in touch: cooperative decision making based on robot-to-robot collisions. Autonom. Agents Multi-Agent Syst. 18(1), 133–155 (2009b);
https://hdl.handle.net/20.500.12585/14190