Treffer: Locating-dominating partitions in graphs

Title:
Locating-dominating partitions in graphs
Contributors:
Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions, Universitat Politècnica de Catalunya. DCCG - Grup de recerca en geometria computacional, combinatoria i discreta
Publication Year:
2016
Collection:
Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledge
Document Type:
Konferenz conference object
File Description:
application/pdf
Language:
English
Rights:
Attribution-NonCommercial-NoDerivs 3.0 Spain ; http://creativecommons.org/licenses/by-nc-nd/3.0/es/ ; Open Access
Accession Number:
edsbas.CD4D6C60
Database:
BASE

Weitere Informationen

Let G = (V, E) be a connected graph of order n. Let ¿ = {S1, . . . , Sk} be a partition of V . Let r(u|¿) denote the vector of distances between a vertex v ¿ V and the elements of ¿, that is, r(v, ¿) = (d(v, S1), . . . , d(v, Sk)). The partition ¿ is called a locating partition of G if, for every pair of distinct vertices u, v ¿ V , r(u, ¿) 6= r(v, ¿). A locating partition ¿ is called metriclocating-dominating partition (an MLD-partition for short) of G if it is also dominating, ; Postprint (published version)