Treffer: Robust inhibition-augmented operator for delineation of curvilinear structures

Title:
Robust inhibition-augmented operator for delineation of curvilinear structures
Publisher Information:
Institute of Electrical and Electronics Engineers
Publication Year:
2019
Collection:
University of Malta: OAR@UM / L-Università ta' Malta
Document Type:
Fachzeitschrift article in journal/newspaper
Language:
English
DOI:
10.1109/TIP.2019.2922096
Rights:
info:eu-repo/semantics/restrictedAccess ; The copyright of this work belongs to the author(s)/publisher. The rights of this work are as defined by the appropriate Copyright Legislation or as modified by any successive legislation. Users may access this work and can make use of the information contained in accordance with the Copyright Legislation provided that the author must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the prior permission of the copyright holder.
Accession Number:
edsbas.B8342B40
Database:
BASE

Weitere Informationen

Delineation of curvilinear structures in images is an important basic step of several image processing applications, such as segmentation of roads or rivers in aerial images, vessels or staining membranes in medical images, and cracks in pavements and roads, among others. Existing methods suffer from insufficient robustness to noise. In this paper, we propose a novel operator for the detection of curvilinear structures in images, which we demonstrate to be robust to various types of noise and effective in several applications. We call it RUSTICO, which stands for RobUST Inhibition-augmented Curvilinear Operator. It is inspired by the push-pull inhibition in visual cortex and takes as input the responses of two trainable B-COSFIRE filters of opposite polarity. The output of RUSTICO consists of a magnitude map and an orientation map. We carried out experiments on a data set of synthetic stimuli with noise drawn from different distributions, as well as on several benchmark data sets of retinal fundus images, crack pavements, and aerial images and a new data set of rose bushes used for automatic gardening. We evaluated the performance of RUSTICO by a metric that considers the structural properties of line networks (connectivity, area, and length) and demonstrated that RUSTICO outperforms many existing methods with high statistical significance. RUSTICO exhibits high robustness to noise and texture. ; peer-reviewed