Treffer: Recursive regression estimation based on the two-time-scale stochastic approximation method and Bernstein polynomials

Title:
Recursive regression estimation based on the two-time-scale stochastic approximation method and Bernstein polynomials
Contributors:
Laboratoire de mathématiques et applications UMR 7348 (LMA Poitiers ), Université de Poitiers = University of Poitiers (UP)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Angevin de Recherche en Mathématiques (LAREMA), Université d'Angers (UA)-Centre National de la Recherche Scientifique (CNRS)
Source:
ISSN: 0929-9629.
Publisher Information:
CCSD
De Gruyter
Publication Year:
2022
Collection:
Université de Poitiers: Publications de nos chercheurs.ses (HAL)
Document Type:
Fachzeitschrift article in journal/newspaper
Language:
English
DOI:
10.1515/mcma-2022-2104
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edsbas.B08362A6
Database:
BASE

Weitere Informationen

International audience ; In this paper, we propose a recursive estimators of the regression function based on the twotime-scale stochastic approximation algorithms and the Bernstein polynomials. We study the asymptotic properties of this estimators. We compare the proposed estimators with the classic regression estimator using the Bernstein polynomial defined by Tenbusch. Results showed that, our proposed recursive estimators can overcome the problem of the edges associated with kernel regression estimation with a compact support. The proposed recursive two-timescale estimators are compared to the non-recursive estimator introduced by Tenbusch and the performance of the two estimators are illustrated via simulations as well as two real datasets.