Treffer: Brief Announcement : The Shortest Temporal Exploration Problem

Title:
Brief Announcement : The Shortest Temporal Exploration Problem
Contributors:
Equipe Réseaux d'interactions et Intelligence Collective (LITIS - RI2C), Laboratoire d'Informatique, du Traitement de l'Information et des Systèmes (LITIS), Université Le Havre Normandie (ULH), Normandie Université (NU)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA), Université Le Havre Normandie - UFR Sciences et Techniques (ULHN UFR ST), Normandie Université (NU)-Normandie Université (NU), ANR-22-CE48-0001,TEMPOGRAL,Problèmes algorithmiques sur les graphes temporels(2022)
Source:
Leibniz International Proceedings in Informatics (LIPIcs) ; Symposium on Algorithmic Foundations of Dynamic Networks (SAND) ; https://normandie-univ.hal.science/hal-05283832 ; Symposium on Algorithmic Foundations of Dynamic Networks (SAND), Jun 2025, LIVERPOOL, United Kingdom. ⟨10.4230/LIPIcs.SAND.2025.2⟩
Publisher Information:
CCSD
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Publication Year:
2025
Subject Geographic:
Document Type:
Konferenz conference object
Language:
English
DOI:
10.4230/LIPIcs.SAND.2025.2
Rights:
http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
Accession Number:
edsbas.A5523F58
Database:
BASE

Weitere Informationen

International audience ; A temporal graph is a graph for which the edge set can change from one time step to the next. This paper considers undirected temporal graphs defined over L time steps and connected at each time step. We study the Shortest Temporal Exploration Problem (STEXP) that, given the evolution of the graph, asks for a temporal walk that starts at a given vertex, moves over at most one edge at each time step, visits all the vertices, takes at most L time steps and traverses the smallest number of edges. We prove that every constantly connected temporal graph with n vertices can be explored with O(n 1.5 ) edges traversed if L is O(n^3.5 ) time steps. This result improves the upper bound of O(n^2 ) edges when L is Ω(n^2 ). Moreover, we study the case where the graph has a diameter bounded by a parameter k at each time step and we prove that there exists an exploration which takes O(kn^2 ) time steps and traverses O(kn) edges. Finally, the case where the underlying graph is a cycle is studied and tight linear bounds are provided on the number of edges traversed in the worst-case.