Abdullah, S., Tahar, K. N., Abdul Rashid, M. F., & Osoman, M. A. (2019). Camera Calibration Performance on Different Non-Metric Cameras. Pertanika Journal of Science & Technology, 27(3), 1397-1406; Ali, A. H., & Mahmood, R. Z. (2021). Bresenham's Line and Circle Drawing Algorithm using FPGA. AL-Rafidain Journal of Computer Sciences and Mathematics, 15(2), 39-53. doi:10.33899/csmj.2021.170007; Al-Khalil, O. (2020). Structure from Motion (SfM) Photogrammetry as Alternative to Laser Scanning for 3D Modelling of Historical Monuments. Open Science Journal, 1-17.; Alsadik, B., & Abdulateef, N. A. (2022). Epipolar Geometry Between Photogrammetry and Computer Vision - A Computational Guide. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 5, 25-32. doi:
https://doi.org/10.5194/isprs-annals-V-5-2022-25-2022; Balado, J., González, E., Díaz-Vilatiño, L., & Lorenzo, H. (2020). Automatic Detection and Characterization of Ground Occlusions in Urban Point Clouds from Mobile Laser Scanning Data. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 13-20.; Barazzetti, L., Brumana, R., Oreni, D., Previtali, M., & Roncoroni, F. (2014). True Orthophoto Generation from UAV Images: Implementation of a Combined Photogrammetric and Computer Vision Appoach. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II, pp. 57-63. Riva del Garda, Italy. doi:10.5194/isprsannals-II-5-57-2014; Barazzetti, L., Remondino, F., & Scaioni, M. (2010). Orientation and 3D Modelling From Markerless Terrestrial Images: Combining Accuracy with Automation. The Photogrammetric Record, 25(132), 356-381. doi:10.1111/j.1477-9730.2010.00599.x; Bhattacharya, S., Braun , C., & Leopold, U. (2021). An Efficient 2.5D Shadow Detection Algorithm for Urban Planning and Design Using a Tensor Based Approach. International Journal of Geo-Information, 10(9), 1-17. doi:
https://doi.org/10.3390/ijgi10090583; Blistan, P., Kovanič, Ľ., Patera, M., & Tomáš, H. (2019). Evaluation Quality Parameters of DEM Generated With Low-Cost UAV Photogrammetry and Structure-from-Motion (SfM) Approach for Topographic Surveying on Small Areas. Acta Montanistica Slovaca, 24(3), 198-212.; Boutros, N., Shortis, M. R., & Harvey, E. S. (2015). A comparison of calibration methods and system configurations of underwater stereo-video systems for applications in Página %7C 210 marine ecology. Limnology and Oceanography: Methods, 13(5), 224-236. doi:
https://doi.org/10.1002/lom3.10020; Cândido de Oliveira, H., & Galo, M. (2013). Detecção de áreas de oclusão para geração de ortoimagem verdadeira utilizando dados LASER. Anais XVI Simpósio Brasileiro de Sensoriamento Remoto - SBSR, (pp. 6135-6142). Fonte:
https://hdl.handle.net/11449/86809; Cândido de Oliveira, H., Porfírio Dal Poz, A., Galo, M., & Fawzy Habib, A. (2018). Surface Gradient Approach for Occlusion Detection Based on Triangulated Irregular Network for True Orthophoto Generation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 443-457. doi:10.1109/jstars.2017.2786162; Chima Jude, I., John Okolie, C., & Gbenga Ayodele, E. (2020). An Assessment of the Accuracy of Structure-from-Motion (SfM) Photogrammetry for 3D Terrain Mapping. Geomatics, Land Management and Landscape(2), 65-82.; Doumit, J. (2020). LiDAR and SfM Point Cloud Fusion Effects in the Generation of Urban Digital Surface Models. BRICS Journal of Education Research, 10(3&4), 40-44.; ESRI. (2022). Displaying Raster Data in ArcGIS {Pro 3.0}. Fonte: Displaying Raster Data in ArcGIS by ESRI:
https://www.esri.com/training/Engine/defaultui/player/modern.html?; Fonstad, M. A., Dietrich, J. T., Courville, B. C., Jensen, J. L., & Carbonneau, P. E. (2013). Topographic structure from motion: a new development in photogrammetric measurement. Earth Surface Processes and Landforms(38), 421-430. doi:
https://10.1002/esp.3366; Gaol, F. L. (2013). Bresenham Algorithm: Implementation and Analysis in Raster Shape. Jornal of Computers, 8(1), 69-78. doi:doi:10.4304/jcp.8.1.69-78; Gomez, C., Hayakawa, Y., & Obanawa, H. (2015). A study of Japanese landscapes using structure from motion derived DSMs and DEMs based on historical aerial photographs: New opportunities for vegetation monitoring and diachronic geomorphology. Geomorphology(242), 11-20. doi:
https://doi.org/10.1016/j.geomorph.2015.02.021; Hu, Y., Stanley, D., & Xin, Y. B. (2016). True ortho generation of urban area using high resolution aerial photos. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information, 1-4.; Iglhaut, J., Cabo, C., Puliti, S., Piermattei, L., O'Connor, J., & Rosette, J. (2019). Structure from Motion Photogrammetry in Forestry: a Review. Current Forestry Reports, 5, 155-168. doi:
https://doi.org/10.1007/s40725-019-00094-3; Iheaturu, C. J., Ayodele, E. G., & Okolie, C. J. (2020). An Assessment of the Accuracy of Structure-from-Motion (SfM) Photogrammetry for 3D Terrain Mapping. Geomatics, Landmanagement and Landscape(2), 65-82. doi:
http://dx.doi.org/10.15576/GLL/2020.2.65; Jeziorska, J. (2019). UAS for Wetland Mapping and Hydrological Modeling. Remote Sensing, 11(17), 1-39. doi:
https://doi.org/10.3390/rs11171997; Jiang, S., Jiang, W., Huang, W., & Yang, L. (2017). UAV-Based Oblique Photogrammetry for Outdoor Data Acquisition and Offsite Visual Inspection of Transmission Line. Remote Sensing, 9(3), 1-25. doi:
https://doi.org/10.3390/rs9030278; Kalacska, M., Chmura, G. L., Lucanus, O., Bérubé, D., & Arroyo-Mora, J. P. (2017). Structure from motion will revolutionize analyses of tidal wetland landscapes. Remote Sensing of Environment, 199, 14-24. doi:
https://doi.org/10.1016/j.rse.2017.06.023; Karantanellis, E., Marinos, V., & Vassilakis, E. (2019). 3D Hazard Analysis and ObjectBased Characterization of Landslide Motion Mechanism using UAV Imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII, pp. 425-430. Enschede, The Netherlands. doi:
https://doi.org/10.5194/isprs-archives-XLII-2-W13-425-2019; Kumar, G., & Sridevi, B. (2020). Development of Efficient Swarm Intelligence Algorithm for Simulating Two-Dimensional Orthomosaic for Terrain Mapping Using Cooperative Unmanned Aerial Vehicles. doi:
https://doi.org/10.1016/B978-0-12-816385-6.00006- 4; Lakshmi Narayanan, R., & Ibe, O. (2015). Joint Network for Disaster Relief and Search and Rescue Network Operations. Wireless Public Safety Networks 1, 163-193. doi:
https://doi.org/10.1016/B978-1-78548-022-5.50006-6; Leal-Alves, D., Weschenfelder, J., da Guia Albuquerque, M., de Almeida Espinoza, J., Ferreira-Cravo, M., & Melo de Almeida, L. (2020). Digital Elevation Model Generation Using UAV-SfM Photogrammetry Techniques to Map Sea-Level Rise Scenarios at Cassino Beach, Brazil. SN Applied Sciences, 1-19.; Li, T., Jiang, C., Bian, Z., Wang, M., & Niu, X. (2020). A Review of True Orthophoto Rectification Algorithms. IOP Conference Series Materials Science and Engineering, 1-8. doi:10.1088/1757-899X/780/2/022035; Li, X., & Shao, X. (2012). Fast line drawing algorithm by circular subtraction based on Bresenham. Fourth International Conference on Machine Vision (ICMV 2011): Machine Vision, Image Processing, and Pattern Analysis, 8349, p. 83490L. doi:
https://doi:10.1117/12.920389; Lisein, J., Deseilligny, M. P., Bonnet, S., & Lejeune, P. (2013). A Photogrammetric Workflow for the Creation of a Forest Canopy Height Model from Small Unmanned Aerial System Imagery. Forests, 922-944. doi:
https://doi.org/10.3390/f4040922; Liu, Y., Zheng, X., Ai, G., Zhang, Y., & Zuo, Y. (2018). Generating a High-Precision True Digital Orthophoto Map Based on UAV Images. ISPRS International Journal of GeoInformation, 7(9), 1-15. doi:
https://doi.org/10.3390/ijgi7090333; Mahmoud, M., Oyedeji, M., & Xia, Y. (2021). Path Planning in Autonomous Aerial Vehicles. 331-362. doi:
https://doi.org/10.1016/B978-0-12-821186-1.00018-0; Micheletti, N., Chandler, J. H., & Lane, S. (2015). Structure from Motion (SfM) Photogrammetry. Geomorphological Techniques (Online Edition). Fonte:
https://repository.lboro.ac.uk/articles/journal_contribution/Structure_from_motion_ SFM_photogrammetry/9457355; Mlambo, R., Woodhouse, I. H., Gerard, F., & Anderson, K. (2017). Structure from Motion (SfM) Photogrammetry with Drone Data: A Low Cost Method for Monitoring Greenhouse Gas Emissions from Forests in Developing Countries. Forests, 8(3). doi:
https://doi.org/10.1016/j.geomorph.2015.02.021; Murtiyoso, A., & Grussenmeyer, P. (2017). Documentation of Heritage Buildings Using Close-Range UAV Images: Dense Matching Issues, Comparison and Case Studies. The Photogrammetric Record, 32(159), 206-229. doi:10.1111/phor.12197; Nex, F., & Remondino, F. (2014). UAV for 3D Mapping Applications: A Review. Applied Geomatics, 1-15. doi:10.1007/s12518-013-0120-x; Ning, W., & Peng, C. (2012). A Novel Method for Projection Based on Bresenham Like Algorithm. Second International Conference on Intelligent System Design and Engineering Application, (pp. 84-87). doi:
https://doi.org/10.1109/ISdea.2012.623; Noor, N., Abdullah, A., & Hashim, M. (2018). Remote Sensing UAV/drones and its applications for urban areas: A review. IOP Conference Series Earth and Environmental Science, (pp. 1-8). doi:
https://10.1088/1755-1315/169/1/012003; Oliveira, H. C., Habib, A. F., Dal Poz, A. P., & Galo, M. (2015). Height Gradient Approach for Occlusion Detection in UAV Imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-1/W4, 263- 268. doi:10.5194/isprsarchives-XL-1-W4-263-2015; Oniga, V.-E., Breaban, A.-I., Pfeifer, N., & Diac, M. (2022). 3D Modelling of Urban Area Based on Oblique UAS Images - An End-to-End Pipeline. Remote Sensing, 14(422), 1-31. doi:
https://doi.org/10.3390/rs14020422; Ostrowski, W., Gulli, V., Bakula, K., & Kurczyński, Z. (2020). Quality Aspects of True Orthophoto in Urban Areas. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 191-198; Peng, S., Ma, H., & Zhang, L. (2019). Automatic Registration of Optical Images with Airborne LiDAR Point Cloud in Urban Scenes Based on Line-Point Similarity Invariant and Extended Collinearity Equations. Sensors, 19(5), 1-17. doi:Automatic Registration of Optical Images with Airborne LiDAR Point Cloud in Urban Scenes Based on Line-Point Similarity Invariant and Extended Collinearity Equations; Pepe, M., Fregonese, L., & Scaioni, M. (2018). Planning Airborne Photogrammetry and Remote Sensing Missions with Modern Platforms and Sensors. European Journal of Remote Sensing, 412-436.; Peppa, M. V., Mills, J. P., Moore, P., Miller, P. E., & Chambers, J. E. (2019). Automated Co-Registration and Calibration in SfM Photogrammetry for Landslide Change Detection. Earth Surface Processes and Landforms, 44(1), 287-303. doi:
https://doi.org/10.1002/esp.4502; Rodrigues Lima, P. (2018). Aerofotogrametría por Meio de VANTs: Análise da Viabilidade no Levantamento Planialtimétrico. Fonte:
https://repositorio.ufersa.edu.br/handle/prefix/6058; Ruzgienė, B. (2014). Analysis of camera orientation variation in airborne photogrammetry: images under tilt (roll-pitch-yaw) angles. Journal of Measurements in Engineering, 2(2), 95-102.; Saeed, A., Younes, A., Cai, C., & Cai, G. (2018). A survey of hybrid Unmanned Aerial Vehicles. Progress in Aerospace Sciences, 91-105. doi:
https://10.1016/j.paerosci.2018.03.007; Sanz-Ablanedo, E., Chandler, J. H., Rodríguez-Pérez, J. R., & Ordóñez, C. (2018). Accuracy of Unmanned Aerial Vehicle (UAV) and SfM Photogrammetry Survey as a Function of the Number and Location of Ground Control Points Used. Remote Sensing, 10(10), 1-19. doi:
https://10.3390/rs10101606; Shin, Y. H., & Lee, D.-C. (2021). True Orthoimage Generation Using Airborne LiDAR Data with Generative Adversarial Network-Based Deep Learning Model. Journal of Sensors, 1-25. doi:
https://doi.org/10.1155/2021/4304548; Singhal, G., Bansod, B., & Mathew, L. (2018). Unmanned Aerial Vehicle Classification, Application and Challenges: A Review. Preprints, 1-19. doi:
https://doi:10.20944/preprints201811.0601.v1; Stöcker, C., Bennett, R., Nex, F., Gerke, M., & Zevenbergen, J. (2017). Review of the Current State of UAV Regulations. Remote Sensing, 9(5). doi:
https://doi.org/10.3390/rs9050459; Tsouros, D. C., Triantafyllou, A., Bibi, S., & Sarigannidis, P. G. (2019). Data acquisition and analysis methods in UAV-based applications for Precision Agriculture. 15th International Conference on Distributed Computing in Sensor Systems (DCOSS), (pp. 377-384). doi:
https://doi:10.1109/dcoss.2019.00080; U.A.E.A.C. (2015). Circular Reglamentaria No. 002 Requisitos Generales de Aeronavegabilidad y Operaciones para RPAS. Fonte: Proyecto Borrador Circular RPAS:
https://www.aerocivil.gov.co/autoridad-de-la-aviacion-civil/certificacion-ylicenciamiento/Documents/PROYECTO%20BORRADOR%20CIRCULAR%20RP AS.pdf#:~:text=Esta%20circular%20aplica%20a%20cualquier%20persona%20%28 natural%20o,fines%20diferentes%20a%20los%20de%20; Wallace, L., Lucieer, A., Malenovský, Z., Turner, D., & Vopěnka, P. (2016). Assessment of Forest Structure Using Two UAV Techniques: A Comparison of Airborne Laser Scanning and Structure from Motion (SfM) Point Clouds. Forests, 7(3). doi:
https://doi.org/10.3390/f7030062; Wang, J., Xiao, S., Song, T., Yue, J., Bian, P., & Li, Y. (2020). Spatial Straight-Line Drawing Algorithm Based on Method of Discriminate Regions - A Control Algorithm of Motors. Energies, 13(19), 1-24. doi:
https://doi.org/10.3390/en13195002; Wang, X., & Xie, J. (2012). A Method for True Orthophoto Generation Based on Projection and Iteration Strategy. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, I-4, pp. 311-314. Melbourne.; Watts, A. C., Ambrosia, V. G., & Hinkley, E. A. (2012). Unmanned Aircraft Systems in Remote Sensing and Scientific Research: Classification and Considerations of Use. Remote Sensing, 4, 1671-1692. doi:
https://doi.org/10.3390/rs4061671; Yao, H., Qin, R., & Chen, X. (2019). Unmanned Aerial Vehicle for Remote Sensing Applications - A Review. MDPI - Remote Sensing, 11(12). doi:
https://doi.org/10.3390/rs11121443; Yesuf, H. M., Assen, M., Melesse, A. M., & Alamirew, T. (2015). Detecting land use/land cover changes in the Lake Hayq (Ethiopia) drainage basin, 1957–2007. Lakes & Reservoirs: Research & Management, 20(1), 1-18. doi:
https://doi.org/10.1111/lre.12082; Zahra, L., & Ayman, H. (2015). A new approach for segmentation-based texturing of laser scanning data., XL-5/W4, pp. 115-121. doi:10.5194/isprsarchives-XL-5-W4-115- 2015; Zhang, H., Aldana-Jague, E., Clapuyt, F., Wilken, F., Vanacker, V., & Van Oost, K. (2019). Evaluating the potential of post-processing kinematic (PPK) georeferencing for UAV-based structure- from-motion (SfM) photogrammetry and surface change detection. Earth Surface Dynamics, 807-827.; Zhao, C., Zhang, C., Yan, Y., & Su, N. (2021). A 3D Reconstruction Framework of Buildings Using Single Off-Nadir Satellite Image. Remote Sensing, 1-20. doi:
https://doi.org/10.3390/rs13214434; Zhou, G., Wang, Y., Yue, T., Ye, S., & Wang, W. (2017). Building Occlusion Detection From Ghost Images. IEEE Transactions on Geoscience and Remote Sensing, 55(2), 1074-1084. doi:10.1109/TGRS.2016.2619184;
https://hdl.handle.net/11349/42344