Vom 20.12.2025 bis 11.01.2026 ist die Universitätsbibliothek geschlossen. Ab dem 12.01.2026 gelten wieder die regulären Öffnungszeiten. Ausnahme: Medizinische Hauptbibliothek und Zentralbibliothek sind bereits ab 05.01.2026 wieder geöffnet. Weitere Informationen

Treffer: Evaluation of visual inspection tests via object detection

Title:
Evaluation of visual inspection tests via object detection
Authors:
Publisher Information:
FH Vorarlberg (Fachhochschule Vorarlberg)
Publication Year:
2023
Collection:
Online Publikationsserver der Fachhochschule Vorarlberg
Subject Terms:
Document Type:
Dissertation master thesis
File Description:
application/pdf
Language:
English
DOI:
10.25924/opus-5091
Accession Number:
edsbas.874D4E0D
Database:
BASE

Weitere Informationen

This thesis evaluates the feasibility of conducting visual inspection tests on power industry constructions using object detection techniques. The introduction provides an overview of this field’s state-of-the-art technologies and approaches. For the implementation, a case study is then conducted, which is done in collaboration with the partner company OMICRON Electronics GmbH, focusing on power transformers as an example. The objective is to develop an inspection test using photographs to identify power transformers and their subcomponents and detect existing rust spots and oil leaks within these components. Three object detection models are trained: one for power transformers and sub-components, one for rust detection, and one for oil leak detection. The training process utilizes the implementation of the YOLOv5 algorithm on a Linux-based workstation with an NVIDIA Quadro RTX 4000 GPU. The power transformer model is trained on a dataset provided by the partner company, while open-source datasets are used for rust and oil leak detection. The study highlights the need for a more powerful GPU to enhance training experiments and utilizes an Azure DevOps Pipeline to optimize the workflow. The performance of the power transformer detection model is satisfactory but influenced by image angles and an imbalance of certain sub-components in the dataset. Multi-angle video footage is a proposed solution for the inspection test to address this limitation and increase the size of the dataset, focusing on reducing the imbalance. The models trained on open-source datasets demonstrate the potential for rust and oil leak detection but lack accuracy due to their generic nature. Therefore, the datasets must be adjusted with case-specific data to achieve the desired accuracy for reliable visual inspection tests. The results of the case study have been well-received by the partner company’s management, indicating future development opportunities. This case study will likely be a foundation for implementing visual inspection tests ...