Treffer: Fast Feature Selection by Means of Projections

Title:
Fast Feature Selection by Means of Projections
Contributors:
Universidad de Sevilla. Departamento de Lenguajes y Sistemas Informáticos
Publication Year:
2016
Collection:
idUS - Deposito de Investigación Universidad de Sevilla
Document Type:
Buch book part
Language:
English
Relation:
Developments in Applied Artificial Intelligence, Lecture Notes in Computer Science, Volume 2718, pp 461-470 (2003); https://idus.us.es/handle/11441/39229
Rights:
Attribution-NonCommercial-NoDerivatives 4.0 Internacional ; http://creativecommons.org/licenses/by-nc-nd/4.0/ ; info:eu-repo/semantics/openAccess
Accession Number:
edsbas.86E0F01
Database:
BASE

Weitere Informationen

The attribute selection techniques for supervised learning, used in the preprocessing phase to emphasize the most relevant attributes, allow making models of classification simpler and easy to understand. The algorithm (SOAP: Selection of Attributes by Projection) has some interesting characteristics: lower computational cost (O(m n log n) m attributes and n examples in the data set) with respect to other typical algorithms due to the absence of distance and statistical calculations; its applicability to any labelled data set, that is to say, it can contain continuous and discrete variables, with no need for transformation. The performance of SOAP is analyzed in two ways: percentage of reduction and classification. SOAP has been compared to CFS [4] and ReliefF [6]. The results are generated by C4.5 before and after the application of the algorithms.