Vom 20.12.2025 bis 11.01.2026 ist die Universitätsbibliothek geschlossen. Ab dem 12.01.2026 gelten wieder die regulären Öffnungszeiten. Ausnahme: Medizinische Hauptbibliothek und Zentralbibliothek sind bereits ab 05.01.2026 wieder geöffnet. Weitere Informationen

Treffer: Machine Learning Quick Reference: Quick and Essential Machine Learning Hacks for Training Smart Data Models.

Title:
Machine Learning Quick Reference: Quick and Essential Machine Learning Hacks for Training Smart Data Models.
Authors:
Source:
EN05CEBSCO05C232
Publisher Information:
Birmingham Packt Publishing Ltd
Publication Year:
2019
Collection:
Kazan Federal University Digital Repository
Document Type:
Buch book
Language:
English
ISBN:
978-1-78883-161-1
1-78883-161-6
Accession Number:
edsbas.5EAA7B78
Database:
BASE

Weitere Informationen

Description based upon print version of record. ; Importing the library ; Machine learning involves development and training of models used to predict future outcomes. This book is a practical guide to all the tips and tricks related to machine learning. It includes hands-on, easy to access techniques on topics like model selection, performance tuning, training neural networks, time series analysis and a lot more. ; Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Quantifying Learning Algorithms; Statistical models; Learning curve; Machine learning; Wright's model; Curve fitting; Residual; Statistical modeling - the two cultures of Leo Breiman; Training data development data -- test data; Size of the training, development, and test set; Bias-variance trade off; Regularization; Ridge regression (L2); Least absolute shrinkage and selection operator ; Cross-validation and model selection; K-fold cross-validation ; Model selection using cross-validation0.632 rule in bootstrapping; Model evaluation; Confusion matrix; Receiver operating characteristic curve; Area under ROC; H-measure; Dimensionality reduction; Summary; Chapter 2: Evaluating Kernel Learning; Introduction to vectors; Magnitude of the vector; Dot product; Linear separability; Hyperplanes ; SVM; Support vector; Kernel trick; Kernel; Back to Kernel trick; Kernel types; Linear kernel; Polynomial kernel; Gaussian kernel; SVM example and parameter optimization through grid search; Summary; Chapter 3: Performance in Ensemble Learning ; What is ensemble learning?Ensemble methods ; Bootstrapping; Bagging; Decision tree; Tree splitting; Parameters of tree splitting; Random forest algorithm; Case study; Boosting; Gradient boosting; Parameters of gradient boosting; Summary; Chapter 4: Training Neural Networks; Neural networks; How a neural network works; Model initialization; Loss function; Optimization; Computation in neural networks; Calculation of activation for H1; Backward propagation; Activation ...