Treffer: Investigating Data Similarity and Estimation Through Spatio-Temporal Correlation to Enhance Energy Efficiency in WSNs

Title:
Investigating Data Similarity and Estimation Through Spatio-Temporal Correlation to Enhance Energy Efficiency in WSNs
Contributors:
Self-organizing Future Ubiquitous Network (FUN), Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), الجامعة اللبنانية بيروت = Lebanese University Beirut = Université libanaise Beyrouth (LU / ULB), Laboratoire d'Informatique Fondamentale de Lille (LIFL), Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)
Source:
ISSN: 1551-9899 ; Ad Hoc & Sensor Wireless Networks ; https://inria.hal.science/hal-00849044 ; Ad Hoc & Sensor Wireless Networks, 2012, 16 (4), pp.273-295.
Publisher Information:
HAL CCSD
PKP Publishing ServicesNetwork
Publication Year:
2012
Collection:
Université de Lille 3 - Sciences Humaines et Sociales: HAL
Document Type:
Fachzeitschrift article in journal/newspaper
Language:
English
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edsbas.36615319
Database:
BASE

Weitere Informationen

International audience ; Wireless sensor networks are of energy-constrained nature, which calls for energy efficient protocols as a primary design goal. Thus, minimizing energy consumption is a main challenge.We are concerned in howcollected data by sensors, can be processed to increase the relevance of certain mass of data and reduce the overall data traffic. Since sensor nodes are often densely deployed, the data collected by nearby nodes are either redundant or correlated. One of the great challenges for the aforementioned problem is to exploit temporal and spatial correlation among the source nodes. Our work is composed of two main tasks: 1- A predictive modeling task that aims to capture the temporal correlation among collected data. 2- A data similarity detection task that measures the data similarity based on the spatial correlation.