Treffer: On infinite past predictability of cyclostationary signals

Title:
On infinite past predictability of cyclostationary signals
Contributors:
Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya. Doctorat en Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya. SPCOM - Grup de Recerca de Processament del Senyal i Comunicacions
Publisher Information:
Institute of Electrical and Electronics Engineers (IEEE)
Publication Year:
2022
Collection:
Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledge
Document Type:
Fachzeitschrift article in journal/newspaper
File Description:
5 p.; application/pdf
Language:
English
Relation:
https://ieeexplore.ieee.org/document/9707625; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105717RB-C22/ES/METODOS ROBUSTOS PARA INFERENCIA ESTADISTICA, INTEGRIDAD DE DATOS Y GESTION DE INTERFERENCIA - 2/; http://hdl.handle.net/2117/366797
DOI:
10.1109/LSP.2022.3149705
Rights:
Open Access
Accession Number:
edsbas.3414635D
Database:
BASE

Weitere Informationen

This paper explores the asymptotic spectral decomposition of periodically Toeplitz matrices with finite summable elements. As an alternative to polyphase decomposition and other approaches based on Gladyshev representation, the proposed route exploits the Toeplitz structure of cyclic autocorrelation matrices, thus leveraging on known asymptotic results and providing a more direct link to the cyclic spectrum and spectral coherence. As a concrete application, the problem of cyclic linear prediction is revisited, concluding with a generalized Kolmogorov-Szeg theorem on the predictability of cyclostationary signals. These results are finally tested experimentally in a prediction setting for an asynchronous mixture of two cyclostationary pulse-amplitude modulation signals. ; This work has been supported by the Spanish Ministry of Science and Innovation through project RODIN (PID2019-105717RB-C22 / MCIN / AEI / 10.13039/501100011033). Authors are within Signal Processing and Communications group (SPCOM) (Signal Theory and Communications Department) at Technical University of Catalonia (UPC). ; Peer Reviewed ; Postprint (author's final draft)