Treffer: Using symbolic execution for equivalent mutant detection

Title:
Using symbolic execution for equivalent mutant detection
Publisher Information:
University of Malta. Faculty of ICT
Publication Year:
2013
Collection:
University of Malta: OAR@UM / L-Università ta' Malta
Document Type:
Konferenz conference object
Language:
English
Rights:
info:eu-repo/semantics/openAccess ; The copyright of this work belongs to the author(s)/publisher. The rights of this work are as defined by the appropriate Copyright Legislation or as modified by any successive legislation. Users may access this work and can make use of the information contained in accordance with the Copyright Legislation provided that the author must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the prior permission of the copyright holder.
Accession Number:
edsbas.325FBDC3
Database:
BASE

Weitere Informationen

Mutation Testing is a fault injection technique used to measure test adequacy score by generating defects (mutations) in a program and checking if its test suite is able to detect such a change. However, this technique suffers from the Equivalent Mutant Problem. Equivalent mutants are mutants which on mutation retain their semantics. Thus, although equivalent mutants are syntactically different, they remain semantically equivalent to the original program. An automated solution which decides equivalence is impossible, as equivalence of non-trivial programs is undecidable. The fact that the Equivalent Mutant Problem is undecidable usually means that human effort is required to decide equivalence. Equivalent mutants are the barrier keeping Mutation Testing from being widely adopted. Moreover, in one study by Irvine et al, the average time taken for each manual mutant classification was fifteen minutes. ; peer-reviewed