Treffer: Stochastic approximation algorithms for multivariate functionals estimation with medical and cognitive fields applications. ; Algorithmes d'approximation stochastique pour l'estimation des fonctionnelles multivariées avec applications dans les domaines médical et cognitif.

Title:
Stochastic approximation algorithms for multivariate functionals estimation with medical and cognitive fields applications. ; Algorithmes d'approximation stochastique pour l'estimation des fonctionnelles multivariées avec applications dans les domaines médical et cognitif.
Authors:
Contributors:
Ecole Supérieure des Sciences et de Technologie de Hammam Sousse (ESSTHS), Laboratoire de mathématiques et applications UMR 7348 (LMA Poitiers ), Université de Poitiers = University of Poitiers (UP)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques Modélisation Déterministe et Aléatoire (LAMMDA), جامعة سوسة = Université de Sousse = University of Sousse (USO), University of Sousse (Tunisia), Université de Poitiers, Khalifa El Mabrouk, Yousri Slaoui, Hamdi Fathallah
Source:
https://hal.science/tel-03857998 ; Statistics [math.ST]. University of Sousse (Tunisia); Université de Poitiers, 2022. English. ⟨NNT : ⟩.
Publisher Information:
CCSD
Publication Year:
2022
Collection:
Université de Poitiers: Publications de nos chercheurs.ses (HAL)
Document Type:
Dissertation doctoral or postdoctoral thesis
Language:
English
Rights:
http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
Accession Number:
edsbas.188D0157
Database:
BASE

Weitere Informationen

Multivariate recursive estimation is the central focus of this thesis. Our basic objective is to construct multivariate functional estimators using stochastic approximations methods. In the opening section, we provide a general introduction of non-parametric estimation topic and the original recursive stochastic approximation algorithm. In the first chapter, we introduce a multivariate recursive estimator for the distribution function. We study the asymptotic properties of this generalized estimator and we compare it with non-recursive Nadaraya's multivariate distribution estimator.It turns out that, with an adequate choice of the stepsize and an appropriate choice of the bandwidth, the MSE (Mean Squared Error) of the multivariate estimator with plug-in bandwidth selection method can be smaller than the two other estimators, namely the multivariate recursive one with cross-validation selection and the non-recursive one of Nadaraya's estimator.The second chapter deals with non-parametric estimation of a conditional cumulative distribution function (CCDF) $\pi: (y|x)\longmapsto\mathbb{P}\left[Y\leqslant y|X=x\right].$ Using the same recursive approach, we suggest a multivariate recursive estimator defined by stochastic approximation algorithm. We investigate the statistical inferences of our estimator and compare them with those of non-recursive Nadaraya-Watson's estimator. Given the idea of conditional estimation, and for the third chapter, we construct a generalized semi-recursive kernel-type estimator of the regression function $ r_{\varphi}: x \longmapsto \mathbb{E}[\varphi(Y) | X = x],$ for a chosen measurable function $\varphi$ and $x\in \rr^d$. In order to examine the asymptotic properties of this estimator, we first calculate the bias and the variance of our proposed estimator which strongly depend on the choice of three parameters which are the stepsizes and the bandwidth. Moreover, we are interested in studying the strong pointwise convergence rate of our estimator. It turns out that under the estimation ...