Treffer: On the complexity of Client-Waiter and Waiter-Client games ; Complexité des jeux Client-Waiter et Waiter-Client

Title:
On the complexity of Client-Waiter and Waiter-Client games ; Complexité des jeux Client-Waiter et Waiter-Client
Contributors:
Laboratoire de Mathématiques (LAMA), Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS), Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry ), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon, Graphes, AlgOrithmes et AppLications (GOAL), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure de Lyon (ENS de Lyon), Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), ANR-21-CE48-0001,P-GASE,Jeux positionnels : complexité, algorithmes et stratégies(2021)
Source:
52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)
International Colloquium on Automata, Languages, and Programming (ICALP)
https://hal.science/hal-04643212
International Colloquium on Automata, Languages, and Programming (ICALP), Jul 2025, Aarhus, Denmark. ⟨10.4230/LIPIcs.ICALP.2025.89⟩
Publisher Information:
CCSD
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Publication Year:
2025
Subject Geographic:
Document Type:
Konferenz conference object
Language:
English
Relation:
info:eu-repo/semantics/altIdentifier/arxiv/2407.06777; ARXIV: 2407.06777
DOI:
10.4230/LIPIcs.ICALP.2025.89
Rights:
http://creativecommons.org/licenses/by-nc-sa/ ; info:eu-repo/semantics/OpenAccess
Accession Number:
edsbas.117A9FBF
Database:
BASE

Weitere Informationen

International audience ; Positional games were introduced by Hales and Jewett in 1963, and their study became more popular after Erdos and Selfridge's first result on their connection to Ramsey theory and hypergraph coloring in 1973. Several conventions of these games exist, and the most popular one, Maker-Breaker was proved to be PSPACE-complete by Schaefer in 1978. The study of their complexity then stopped for decades, until 2017 when Bonnet, Jamain, and Saffidine proved that Maker-Breaker is W[1]-complete when parameterized by the number of moves. The study was then intensified when Rahman and Watson improved Schaefer's result in 2021 by proving that the PSPACE-hardness holds for 6-uniform hypergraphs. More recently, Galliot, Gravier, and Sivignon proved that computing the winner on rank 3 hypergraphs is in P. We focus here on the Client-Waiter and the Waiter-Client conventions. Both were proved to be NP-hard by Csernenszky, Martin, and Pluh\'ar in 2011, but neither completeness nor positive results were known for these conventions. In this paper, we complete the study of these conventions by proving that the former is PSPACE-complete, even restricted to 6-uniform hypergraphs, and by providing an FPT-algorithm for the latter, parameterized by the size of its largest edge. In particular, the winner of Waiter-Client can be computed in polynomial time in k-uniform hypergraphs for any fixed integer k. Finally, in search of finding the exact bound between the polynomial result and the hardness result, we focused on the complexity of rank 3 hypergraphs in the Client-Waiter convention. We provide an algorithm that runs in polynomial time with an oracle in NP.