YUAN, Jing, BAE, Egil, TAI, Xue-Cheng und BOYKOV, Yuri, 2014. A spatially continuous max-flow and min-cut framework for binary labeling problems. Numerische Mathematik. 1 März 2014. Vol. 126, no. 3, p. 559-587. DOI 10.1007/s00211-013-0569-x.
Elsevier - Harvard (with titles)Yuan, J., Bae, E., Tai, X.-C., Boykov, Y., 2014. A spatially continuous max-flow and min-cut framework for binary labeling problems. Numerische Mathematik 126, 559-587. https://doi.org/10.1007/s00211-013-0569-x
American Psychological Association 7th editionYuan, J., Bae, E., Tai, X.-C., & Boykov, Y. (2014). A spatially continuous max-flow and min-cut framework for binary labeling problems. Numerische Mathematik, 126(3), 559-587. https://doi.org/10.1007/s00211-013-0569-x
Springer - Basic (author-date)Yuan J, Bae E, Tai X-C, Boykov Y (2014) A spatially continuous max-flow and min-cut framework for binary labeling problems.. Numerische Mathematik 126:559-587. https://doi.org/10.1007/s00211-013-0569-x
Juristische Zitierweise (Stüber) (Deutsch)Yuan, Jing/ Bae, Egil/ Tai, Xue-Cheng/ Boykov, Yuri, A spatially continuous max-flow and min-cut framework for binary labeling problems., Numerische Mathematik 2014, 559-587.