Vom 20.12.2025 bis 11.01.2026 ist die Universitätsbibliothek geschlossen. Ab dem 12.01.2026 gelten wieder die regulären Öffnungszeiten. Ausnahme: Medizinische Hauptbibliothek und Zentralbibliothek sind bereits ab 05.01.2026 wieder geöffnet. Weitere Informationen
ISO-690 (author-date, English)

CHAKRABORTY, Annesha, KRISHNAN, Vignesh und THAMOTHARAN, Subbiah, 2025. Generative adversarial network (GAN) model-based design of potent SARS-Co V-2 Mpro inhibitors using the electron density of ligands and 3 D binding pockets: insights from molecular docking, dynamics simulation, and MM-GBSA analysis. Molecular Diversity. 1 August 2025. Vol. 29, no. 4, p. 3059-3075. DOI 10.1007/s11030-024-11047-9.

Elsevier - Harvard (with titles)

Chakraborty, A., Krishnan, V., Thamotharan, S., 2025. Generative adversarial network (GAN) model-based design of potent SARS-Co V-2 Mpro inhibitors using the electron density of ligands and 3 D binding pockets: insights from molecular docking, dynamics simulation, and MM-GBSA analysis. Molecular Diversity 29, 3059-3075. https://doi.org/10.1007/s11030-024-11047-9

American Psychological Association 7th edition

Chakraborty, A., Krishnan, V., & Thamotharan, S. (2025). Generative adversarial network (GAN) model-based design of potent SARS-Co V-2 Mpro inhibitors using the electron density of ligands and 3 D binding pockets: insights from molecular docking, dynamics simulation, and MM-GBSA analysis. Molecular Diversity, 29(4), 3059-3075. https://doi.org/10.1007/s11030-024-11047-9

Springer - Basic (author-date)

Chakraborty A, Krishnan V, Thamotharan S (2025) Generative adversarial network (GAN) model-based design of potent SARS-Co V-2 Mpro inhibitors using the electron density of ligands and 3 D binding pockets: insights from molecular docking, dynamics simulation, and MM-GBSA analysis.. Molecular Diversity 29:3059-3075. https://doi.org/10.1007/s11030-024-11047-9

Juristische Zitierweise (Stüber) (Deutsch)

Chakraborty, Annesha/ Krishnan, Vignesh/ Thamotharan, Subbiah, Generative adversarial network (GAN) model-based design of potent SARS-Co V-2 Mpro inhibitors using the electron density of ligands and 3 D binding pockets: insights from molecular docking, dynamics simulation, and MM-GBSA analysis., Molecular Diversity 2025, 3059-3075.

Bitte prüfen Sie die Zitate auf Korrektheit, bevor Sie diese in Ihre Arbeit einfügen.