Treffer: Differential co-expression analysis of rheumatoid arthritis with microarray data.
Weitere Informationen
The aim of the present study was to investigate the underlying molecular mechanisms of rheumatoid arthritis (RA) using microarray expression profiles from osteoarthritis and RA patients, to improve diagnosis and treatment strategies for the condition. The gene expression profile of GSE27390 was downloaded from Gene Expression Omnibus, including 19 samples from patients with RA (n=9) or osteoarthritis (n=10). Firstly, the differentially expressed genes (DEGs) were obtained with the thresholds of ∣logFC∣>1.0 and P<0.05, using the t-test method in LIMMA package. Then, differentially co-expressed genes (DCGs) and differentially co-expressed links (DCLs) were screened with q<0.25 by the differential coexpression analysis and differential regulation analysis of gene expression microarray data package. Secondly, pathway enrichment analysis for DCGs was performed by the Database for Annotation, Visualization and Integrated Discovery and the DCLs associated with RA were selected by comparing the obtained DCLs with known transcription factor (TF)-targets in the TRANSFAC database. Finally, the obtained TFs were mapped to the known TF-targets to construct the network using cytoscape software. A total of 1755 DEGs, 457 DCGs and 101988 DCLs were achieved and there were 20 TFs in the obtained six TF-target relations (STAT3-TNF, PBX1-PLAU, SOCS3-STAT3, GATA1-ETS2, ETS1-ICAM4 and CEBPE-GATA1) and 457 DCGs. A number of TF-target relations in the constructed network were not within DCLs when the TF and target gene were DCGs. The identified TFs may have an important role in the pathogenesis of RA and have the potential to be used as biomarkers for the development of novel diagnostic and therapeutic strategies for RA. [ABSTRACT FROM AUTHOR]
Copyright of Molecular Medicine Reports is the property of Spandidos Publications UK Ltd and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)