Treffer: Managing performance and power consumption tradeoff for multiple heterogeneous servers in cloud computing.

Title:
Managing performance and power consumption tradeoff for multiple heterogeneous servers in cloud computing.
Source:
Cluster Computing; Sep2014, Vol. 17 Issue 3, p943-955, 13p
Database:
Complementary Index

Weitere Informationen

There are typically multiple heterogeneous servers providing various services in cloud computing. High power consumption of these servers increases the cost of running a data center. Thus, there is a problem of reducing the power cost with tolerable performance degradation. In this paper, we optimize the performance and power consumption tradeoff for multiple heterogeneous servers. We consider the following problems: (1) optimal job scheduling with fixed service rates; (2) joint optimal service speed scaling and job scheduling. For problem (1), we present the Karush-Kuhn-Tucker (KKT) conditions and provide a closed-form solution. For problem (2), both continuous speed scaling and discrete speed scaling are considered. In discrete speed scaling, the feasible service rates are discrete and bounded. We formulate the problem as an MINLP problem and propose a distributed algorithm by online value iteration, which has lower complexity than a centralized algorithm. Our approach provides an analytical way to manage the tradeoff between performance and power consumption. The simulation results show the gain of using speed scaling, and also prove the effectiveness and efficiency of the proposed algorithms. [ABSTRACT FROM AUTHOR]

Copyright of Cluster Computing is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)