Treffer: Comparison of multi-objective evolutionary approaches for task scheduling in distributed computing systems.
Weitere Informationen
Parallel and distributed systems play an important part in the improvement of high performance computing. In these type of systems task scheduling is a key issue in achieving high performance of the system. In general, task scheduling problems have been shown to be NP-hard. As deterministic techniques consume much time in solving the problem, several heuristic methods are attempted in obtaining optimal solutions. This paper presents an application of Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) and a Non-dominated Sorting Particle Swarm Optimization Algorithm (NSPSO) to schedule independent tasks in a distributed system comprising of heterogeneous processors. The problem is formulated as a multi-objective optimization problem, aiming to obtain schedules achieving minimum makespan and flowtime. The applied algorithms generate Pareto set of global optimal solutions for the considered multi-objective scheduling problem. The algorithms are validated against a set of benchmark instances and the performance of the algorithms evaluated using standard metrics. Experimental results and performance measures infer that NSGA-II produces quality schedules compared to NSPSO. [ABSTRACT FROM AUTHOR]
Copyright of Sādhanā: Academy Proceedings in Engineering Sciences is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)