Treffer: Solving Nonlinear Programming Problems with Noisy Function Values and Noisy Gradients.
Weitere Informationen
An efficient algorithm for solving nonlinear programs with noisy equality constraints is introduced and analyzed. The unknown exact constraints are replaced by surrogates based on the bundle idea, a well-known strategy from nonsmooth optimization. This concept allows us to perform a fast computation of the surrogates by solving simple quadratic optimization problems, control the memory needed by the algorithm, and prove the differentiability properties of the surrogate functions. The latter aspect allows us to invoke a sequential quadratic programming method. The overall algorithm is of the quasi-Newton type. Besides convergence theorems, qualification results are given and numerical test runs are discussed. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Optimization Theory & Applications is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)