Treffer: CEDAR: An Ontology-Based Framework Using Event Abstractions to Contextualise Financial Data Processes.
Weitere Informationen
Financial institutions face data quality (DQ) challenges in regulatory reporting due to complex architectures where data flows through multiple systems. Data consumers struggle to assess quality because traditional DQ tools operate on data snapshots without capturing temporal event sequences and business contexts that determine whether anomalies represent genuine issues or valid behavior. Existing approaches address either semantic representation (ontologies for static knowledge) or temporal pattern detection (event processing without semantics), but not their integration. This paper presents CEDAR (Contextual Events and Domain-driven Associative Representation), integrating financial ontologies with event-driven processing for context-aware DQ assessment. Novel contributions include (1) ontology-driven rule derivation that automatically translates OWL business constraints into executable detection logic; (2) temporal ontological reasoning extending static quality assessment with event stream processing; (3) explainable assessment tracing anomalies through causal chains to violated constraints; and (4) standards-based design using W3C technologies with FIBO extensions. Following the Design Science Research Methodology, we document the first, early-stage iteration focused on design novelty and technical feasibility. We present conceptual models, a working prototype, controlled validation with synthetic equity derivative data, and comparative analysis against existing approaches. The prototype successfully detects context-dependent quality issues and enables ontological root cause exploration. Contributions: A novel integration of ontologies and event processing for financial DQ management with validated technical feasibility, demonstrating how semantic web technologies address operational challenges in event-driven architectures. [ABSTRACT FROM AUTHOR]
Copyright of Electronics (2079-9292) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)