Treffer: Manna SafeioD: A Framework and Roadmap for Secure Design in the Internet of Drones.
Weitere Informationen
With the increasing adoption of advanced drone technologies across diverse fields, the Internet of Drones (IoD) has emerged as a novel mobility paradigm, particularly enhancing Intelligent Transportation Systems (ITS) in urban environments. Despite its significant potential, the IoD faces substantial challenges due to inherent resource constraints such as limited computational power and energy capacity, which hinder the implementation of robust cybersecurity solutions. These limitations expose IoD networks to various security vulnerabilities and privacy threats, necessitating an exhaustive analysis and understanding of these risks. In this paper we introduce SafeIoD, a comprehensive security framework designed to establish standardized procedures for proactive risk identification in Internet of Drones (IoD) devices. It involves sequential steps to determine the trustworthiness of devices subjected to these certification. Therefore, SafeIoD seeks to ensure a basic security level before implementation in a real scenario, where the network devices are evaluated in regards to the specific security requirements. Validation through experimental testing with 15 participants across four IoD deployment scenarios and one military certification case demonstrated the framework's effectiveness: the tool achieved 73% user satisfaction rating, successfully identified an average of 3.0 security requirements per device, and provided specific lightweight cryptographic algorithm recommendations for 62.2% of elicited requirements. In a tactical military scenario simulation, the framework accurately predicted risk propagation patterns, with COOJA network simulations confirming that implementation of framework-recommended protocols reduced successful attack propagation from 60% to below 5% of the network. [ABSTRACT FROM AUTHOR]
Copyright of Applied Sciences (2076-3417) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)