Treffer: A Modular Solution Concept for Self-Configurable Electronic Lab Notebooks: Systematic Theoretical Demonstration and Validation Across Diverse Digital Platforms.
Weitere Informationen
Featured Application: The proposed modular solution concept can be directly applied by research institutions seeking to implement cost-effective, customizable, and compliant ELNs on widely available digital platforms such as Microsoft SharePoint or Google Workspace, without the need for proprietary software or advanced programming expertise. The increasing complexity and digitization of scientific research require Electronic Laboratory Notebooks (ELNs) that are adaptable, sustainable, and compliant across heterogeneous laboratory environments. In response to the limitations of proprietary, inflexible, and cost-intensive ELN solutions, this study systematically derives comprehensive requirements and proposes a modular solution concept for self-configurable ELNs that is explicitly platform-agnostic and broadly accessible. The methodological approach combines a structured requirements analysis with a modular architectural design, followed by theoretical validation through stepwise implementation walkthroughs on Microsoft SharePoint and Google Workspace. These walkthroughs demonstrate the feasibility of deploying self-configurable ELN modules using widely available low-code/no-code tools and native platform extensibility mechanisms. Based on a rigorous literature-driven analysis, key requirements, including modularity, usability, regulatory compliance, interoperability, scalability, auditability, and cost efficiency, are explicitly mapped to concrete architectural features within the proposed framework. The results show that essential ELN functionalities can, in principle, be realized across diverse digital platforms, enabling researchers and local administrators to independently assemble, configure, and adapt ELNs to their specific operational and regulatory contexts. Beyond technical feasibility, the proposed approach fundamentally democratizes ELN deployment and substantially mitigates vendor lock-in by leveraging existing digital infrastructures. Identified limitations, particularly with respect to advanced workflow orchestration and real-time data integration, delineate clear directions for future development. Overall, this work provides a systematic theoretical validation of a modular, self-configurable ELN concept, establishing it as a robust, scalable, and future-ready foundation for digital laboratory infrastructures. [ABSTRACT FROM AUTHOR]
Copyright of Applied Sciences (2076-3417) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)