Treffer: GCEA-YOLO: An Enhanced YOLOv11-Based Network for Smoking Behavior Detection in Oilfield Operation Areas.

Title:
GCEA-YOLO: An Enhanced YOLOv11-Based Network for Smoking Behavior Detection in Oilfield Operation Areas.
Source:
Sensors (14248220); Jan2026, Vol. 26 Issue 1, p103, 23p
Database:
Complementary Index

Weitere Informationen

Smoking in oilfield operation areas poses a severe risk of fire and explosion accidents, threatening production safety, workers' lives, and the surrounding ecological environment. Such behavior represents a typical preventable unsafe human action. Detecting smoking behaviors among oilfield workers can fundamentally prevent such safety incidents. To address the challenges of low detection accuracy for small objects and frequent missed or false detections under extreme industrial environments, this paper proposes a GCEA-YOLO network based on YOLOv11 for smoking behavior detection. First, a CSP-EDLAN module is introduced to enhance fine-grained feature learning. Second, to reduce model complexity while preserving critical spatial information, an ADown module is incorporated. Third, an enhanced feature fusion module is integrated to achieve effective multiscale feature aggregation. Finally, an EfficientHead module is employed to generate high-precision and lightweight detection results. The experimental results demonstrate that, compared with YOLOv11n, GCEA-YOLO achieves improvements of 20.8% in precision, 6.9% in recall, and 15.1% in mean average precision (mAP). Overall, GCEA-YOLO significantly outperforms YOLOv11n. [ABSTRACT FROM AUTHOR]

Copyright of Sensors (14248220) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)