Treffer: A Geostatistical Predictive Framework for 3D Lithological Modeling of Heterogeneous Subsurface Systems Using Empirical Bayesian Kriging 3D (EBK3D) and GIS.
Weitere Informationen
Predicting subsoil properties accurately is important for engineering tasks like construction, land development, and environmental management. However, traditional approaches that use borehole data often face challenges because the data is sparse and unevenly spread, which can cause uncertainty in understanding the subsurface. This study introduces a novel geostatistical framework employing Empirical Bayesian Kriging 3D (EBK3D) within a Geographic Information System (GIS), which was developed to construct three-dimensional lithological models. The framework was applied to 265 boreholes from the Queen Mary Reservoir in London. ArcGIS Pro was used to interpolate lithology layers using EBK3D, resulting in voxel-based models that represent both horizontal and vertical lithological variations. Model validation was performed with an independent dataset comprising 30% of the boreholes. The results demonstrated high predictive accuracy for layer elevations (Pearson's r = 0.99, MAE = 0.31 m). The model achieved 100% accuracy in predicting borehole stratigraphy in homogenous zones and correctly identified 77% of lithological layers in heterogeneous zones. In complex regions, the model accurately predicted the whole borehole in 49% of cases. This framework provides a reliable, repeatable, and cost-effective method for three-dimensional subsurface characterization, enhancing traditional approaches by automating uncertainty quantification and capturing both vertical and horizontal variability. [ABSTRACT FROM AUTHOR]
Copyright of Geomatics (2673-7418) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)