Treffer: Content Generation Through the Integration of Markov Chains and Semantic Technology (CGMCST).

Title:
Content Generation Through the Integration of Markov Chains and Semantic Technology (CGMCST).
Source:
Applied Sciences (2076-3417); Dec2025, Vol. 15 Issue 23, p12687, 19p
Database:
Complementary Index

Weitere Informationen

In today's rapidly evolving digital landscape, businesses are constantly under pressure to produce high-quality, engaging content for various marketing channels, including blog posts, social media updates, and email campaigns. However, the traditional manual content generation process is often time-consuming, resource-intensive, and inconsistent in maintaining the desired messaging and tone. As a result, the content production process can become a bottleneck, delay marketing campaigns, and reduce organizational agility. Furthermore, manual content generation introduces the risk of inconsistencies in tone, style, and messaging across different platforms and pieces of content. These inconsistencies can confuse the audience and dilute the message. We propose a hybrid approach for content generation based on the integration of Markov Chains with Semantic Technology (CGMCST). Based on the probabilistic nature of Markov chains, this approach allows an automated system to predict sequences of words and phrases, thereby generating coherent and contextually accurate content. Moreover, the application of semantic technology ensures that the generated content is semantically rich and maintains a consistent tone and style. Consistency across all marketing materials strengthens the message and enhances audience engagement. Automated content generation can scale effortlessly to meet increasing demands. The algorithm obtained an entropy of 9.6896 for the stationary distribution, indicating that the model can accurately predict the next word in sequences and generate coherent, contextually appropriate content that supports the efficacy of this novel CGMCST approach. The simulation was executed for a fixed time of 10,000 cycles, considering the weights based on the top three topics. These weights are determined both by the global document index and by term. The stationary distribution of the Markov chain for the top keywords, by stationary probability, includes a stationary distribution of "people" with a 0.004398 stationary distribution. [ABSTRACT FROM AUTHOR]

Copyright of Applied Sciences (2076-3417) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)