Treffer: Design and Implementation of a Quick-Change End-Effector Control System for Lightweight Robotic Arms in Workpiece Assembly Applications.

Title:
Design and Implementation of a Quick-Change End-Effector Control System for Lightweight Robotic Arms in Workpiece Assembly Applications.
Source:
Actuators; Dec2025, Vol. 14 Issue 12, p619, 24p
Database:
Complementary Index

Weitere Informationen

This paper presents a lightweight end-effector quick-change control system for robotic arms, designed for scenarios such as workpiece assembly that require rapid switching between multiple end-effectors. The system utilizes a proprietary quick-change mechanism as its hardware foundation. Its main disk employs a modular and lightweight design compatible with small collaborative robots like the UR3. Motor-driven claws enable automatic tool locking and unlocking. To unify control interfaces for heterogeneous motor-driven tools, this paper proposes a universal peripheral adapter circuit based on the RS485 bus and a tool ID recognition mechanism, establishing a standardized four-wire interface for multi-tool sharing. At the control level, embedded control programs were developed for both the quick-change device and the tool end. An upper-level control platform based on ROS and MoveIt was established to achieve automatic quick-change and task sequence control during typical robotic operations such as "drilling-assembly workpiece." Statistics from 20 locking time and communication success rate tests, along with 30 complete assembly experiments, demonstrate that the average quick-change locking time is 1.81 s, communication success rate is 100%, and a 93.3% assembly process success rate. These results validate the feasibility and stability of the proposed lightweight robotic arm end-effector quick-change control system in workpiece assembly scenarios, providing an expandable and reproducible quick-change control solution for multi-task operations of lightweight robotic arms. [ABSTRACT FROM AUTHOR]

Copyright of Actuators is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)