Treffer: Design and Development of an Autonomous Mobile Robot for Unstructured Indoor Environments.

Title:
Design and Development of an Autonomous Mobile Robot for Unstructured Indoor Environments.
Source:
Machines; Nov2025, Vol. 13 Issue 11, p1044, 27p
Database:
Complementary Index

Weitere Informationen

This research work presents the design and the development of a cost-effective autonomous mobile robot for locating misplaced objects within unstructured indoor environments. The tools integrated into the proposed system for perception and localization are a hardware architecture equipped with LiDAR, an inertial measurement unit (IMU), and wheel encoders. The system also includes an ROS2-based software stack enabling autonomous navigation via the NAV2 framework and Adaptive Monte Carlo Localization (AMCL). For real-time object detection, a lightweight YOLO11n model is developed and implemented on a Raspberry Pi 4 to enable the robot to identify common household items. The robot's motion control is achieved by a fuzzy logic-enhanced PID controller that dynamically modifies gain values based on navigation conditions. Remote supervision, task management, and real-time status monitoring are provided by a user-friendly Flutter-based mobile application. Simulations and real-world experiments demonstrate the robustness, modularity, and responsiveness of the robot in dynamic environments. This robot achieves a 3 cm localization error and a 95% task execution success rate. [ABSTRACT FROM AUTHOR]

Copyright of Machines is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)