Treffer: Efficient Image Restoration for Autonomous Vehicles and Traffic Systems: A Knowledge Distillation Approach to Enhancing Environmental Perception †.
Weitere Informationen
Image restoration tasks such as deraining, deblurring, and dehazing are crucial for enhancing the environmental perception of autonomous vehicles and traffic systems, particularly for tasks like vehicle detection, pedestrian detection and lane line identification. While transformer-based models excel in these tasks, their prohibitive computational complexity hinders real-world deployment on resource-constrained platforms. To bridge this gap, this paper introduces a novel Soft Knowledge Distillation (SKD) framework, designed specifically for creating highly efficient yet powerful image restoration models. Our core innovation is twofold: first, we propose a Multi-dimensional Cross-Net Attention(MCA) mechanism that allows a compact student model to learn comprehensive attention relationships from a large teacher model across both spatial and channel dimensions, capturing fine-grained details essential for high-quality restoration. Second, we pioneer the use of a contrastive learning loss at the reconstruction level, treating the teacher's outputs as positives and the degraded inputs as negatives, which significantly elevates the student's reconstruction quality. Extensive experiments demonstrate that our method achieves a superior trade-off between performance and efficiency, notably enhancing downstream tasks like object detection. The primary contributions of this work lie in delivering a practical and compelling solution for real-time perceptual enhancement in autonomous systems, pushing the boundaries of efficient model design. [ABSTRACT FROM AUTHOR]
Copyright of Computers (2073-431X) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)