Vom 20.12.2025 bis 11.01.2026 ist die Universitätsbibliothek geschlossen. Ab dem 12.01.2026 gelten wieder die regulären Öffnungszeiten. Ausnahme: Medizinische Hauptbibliothek und Zentralbibliothek sind bereits ab 05.01.2026 wieder geöffnet. Weitere Informationen

Treffer: Empowering text classification with NLP and explainable AI for enhanced interpretability.

Title:
Empowering text classification with NLP and explainable AI for enhanced interpretability.
Source:
Journal of Electrical Systems & Information Technology; 9/28/2025, Vol. 12 Issue 1, p1-15, 15p
Database:
Complementary Index

Weitere Informationen

Artificial intelligence (AI) models have demonstrated significant success in classifying various types of text. However, the complex nature of these models often complicates the interpretability of their classifications. To address these challenges and to enhance explainability, this study proposes a novel approach to text classification leveraging natural language processing (NLP) techniques and explainable AI (XAI) methods. Text preprocessing steps were essential for improving the quality of text analysis. This was gained by eliminating elements that contribute minimal semantic value. To achieve robust performance and mitigate the risk of overfitting, repeated stratified K-Fold cross-validation was utilized. Furthermore, the synthetic minority oversampling technique (SMOTE) was employed to address dataset imbalance issues. In the classification phase, nine machine learning models and hybrid/multi-model approaches were employed. To validate the explainability of the classifications, the local interpretable model-agnostic explanations (LIME) framework was utilized. The study utilized two datasets containing texts from domains such as sports, medicine, entertainment, politics, technology, and business. Empirical evaluations demonstrated the effectiveness of the proposed approach. The proposed hybrid model achieved exceptional performance across key metrics, including accuracy, precision, recall, and F1-score. The proposed hybrid model achieved results of up to 99% accuracy. This work can be used for various text analysis applications. [ABSTRACT FROM AUTHOR]

Copyright of Journal of Electrical Systems & Information Technology is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)