Treffer: Small Language Model-Guided Quantile Temporal Difference Learning for Improved IoT Application Placement in Fog Computing.

Title:
Small Language Model-Guided Quantile Temporal Difference Learning for Improved IoT Application Placement in Fog Computing.
Source:
Mathematics (2227-7390); Sep2025, Vol. 13 Issue 17, p2768, 20p
Database:
Complementary Index

Weitere Informationen

The global market for fog computing is expected to reach USD 6385 million by 2032. Modern enterprises rely on fog computing since it offers computational resources at edge devices through decentralized computation mechanisms. One of the crucial components of fog computing is the proper placement of applications on fog nodes (edge devices, Internet of Things (IoT)) for servicing. Large-scale, geographically distributed fog networks and heterogeneity of fog nodes make application placement a challenging task. Quantile Temporal Difference Learning (QTDL) is a promising distributed form of a reinforcement learning algorithm. It is superior compared to traditional reinforcement learning as it learns the act of prediction based on the full distribution of returns. QTDL is enriched by a small language model (SLM), which results in low inference latency, reduced costs of operation, and also enhanced rates of learning. The SLM, being a lightweight model, has policy-shaping capability, which makes it an ideal choice for the resource-constrained environment of edge devices. The data-driven quantiles of temporal difference learning are blended with the informed heuristics of the SLM to prevent quantile loss and over- or underestimation of the policies. In this paper, a novel SLM-guided QTDL framework is proposed to perform task scheduling among fog nodes. The proposed framework is implemented using the iFogSim simulator by considering both certain and uncertain fog computing environments. Further, the results obtained are validated using expected value analysis. The performance of the proposed framework is found to be satisfactory with respect of the following performance metrics: energy consumption, makespan time violations, budget violations, and load imbalance ratio. [ABSTRACT FROM AUTHOR]

Copyright of Mathematics (2227-7390) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)