Vom 20.12.2025 bis 11.01.2026 ist die Universitätsbibliothek geschlossen. Ab dem 12.01.2026 gelten wieder die regulären Öffnungszeiten. Ausnahme: Medizinische Hauptbibliothek und Zentralbibliothek sind bereits ab 05.01.2026 wieder geöffnet. Weitere Informationen

Treffer: PyNoetic: A modular python framework for no-code development of EEG brain-computer interfaces.

Title:
PyNoetic: A modular python framework for no-code development of EEG brain-computer interfaces.
Source:
PLoS ONE; 8/6/2025, Vol. 20 Issue 8, p1-28, 28p
Database:
Complementary Index

Weitere Informationen

Electroencephalography (EEG)-based Brain-Computer Interfaces (BCIs) have emerged as a transformative technology with applications spanning robotics, virtual reality, medicine, and rehabilitation. However, existing BCI frameworks face several limitations, including a lack of stage-wise flexibility essential for experimental research, steep learning curves for researchers without programming expertise, elevated costs due to reliance on proprietary software, and a lack of all-inclusive features leading to the use of multiple external tools affecting research outcomes. To address these challenges, we present PyNoetic, a modular BCI framework designed to cater to the diverse needs of BCI research. PyNoetic is one of the very few frameworks in Python that encompasses the entire BCI design pipeline, from stimulus presentation and data acquisition to channel selection, filtering, feature extraction, artifact removal, and finally simulation and visualization. Notably, PyNoetic introduces an intuitive and end-to-end GUI coupled with a unique pick-and-place configurable flowchart for no-code BCI design, making it accessible to researchers with minimal programming experience. For advanced users, it facilitates the seamless integration of custom functionalities and novel algorithms with minimal coding, ensuring adaptability at each design stage. PyNoetic also includes a rich array of analytical tools such as machine learning models, brain-connectivity indices, systematic testing functionalities via simulation, and evaluation methods of novel paradigms. PyNoetic's strengths lie in its versatility for both offline and real-time BCI development, which streamlines the design process, allowing researchers to focus on more intricate aspects of BCI development and thus accelerate their research endeavors. [ABSTRACT FROM AUTHOR]

Copyright of PLoS ONE is the property of Public Library of Science and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)