Vom 20.12.2025 bis 11.01.2026 ist die Universitätsbibliothek geschlossen. Ab dem 12.01.2026 gelten wieder die regulären Öffnungszeiten. Ausnahme: Medizinische Hauptbibliothek und Zentralbibliothek sind bereits ab 05.01.2026 wieder geöffnet. Weitere Informationen

Treffer: Visualising Spatial Dispersion in Cultural Heritage Data.

Title:
Visualising Spatial Dispersion in Cultural Heritage Data.
Source:
ISPRS International Journal of Geo-Information; Jul2025, Vol. 14 Issue 7, p267, 25p
Database:
Complementary Index

Weitere Informationen

The digitisation of cultural heritage has transformed how GLAM (Galleries, Libraries, Archives and Museums) institutions manage and share collections. Digital catalogues are indispensable for documenting and granting public access to cultural assets. However, integrating spatial data remains challenging due to the ambiguity, uncertainty, granularity, and heterogeneity of historical data. This study addresses these issues through a case study on the Museo de América's "Place of Provenance" data, proposing a methodology for data cleaning and evaluating geocoding accuracy using Nominatim, ArcGIS, and GeoNames APIs. We assess these APIs by quantifying geocoding errors through a "balance sheet" method, identifying instances of over-representation, under-representation, or neutral results for geographical regions. The effectiveness of each API is analysed using confusion matrices and interactive cartograms, offering insights into misallocations. Our findings reveal varying accuracy among the APIs in processing heterogeneous historical spatial data. Nominatim achieved a 40.91% neutral result in correctly geocoding countries, underscoring challenges in spatial data representation. This research provides valuable methodological experiences and insights for researchers and GLAM institutions working with cultural heritage datasets. By enhancing spatial dispersion visualisation, this work contributes to understanding cultural circulations and historical patterns. This interdisciplinary work was developed as part of the ClioViz project, integrating Data Science, data Visualisation, and art history. [ABSTRACT FROM AUTHOR]

Copyright of ISPRS International Journal of Geo-Information is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)