Vom 20.12.2025 bis 11.01.2026 ist die Universitätsbibliothek geschlossen. Ab dem 12.01.2026 gelten wieder die regulären Öffnungszeiten. Ausnahme: Medizinische Hauptbibliothek und Zentralbibliothek sind bereits ab 05.01.2026 wieder geöffnet. Weitere Informationen

Treffer: Determination of Spatiotemporal Gait Parameters Using a Smartphone's IMU in the Pocket: Threshold-Based and Deep Learning Approaches.

Title:
Determination of Spatiotemporal Gait Parameters Using a Smartphone's IMU in the Pocket: Threshold-Based and Deep Learning Approaches.
Source:
Sensors (14248220); Jul2025, Vol. 25 Issue 14, p4395, 16p
Database:
Complementary Index

Weitere Informationen

This study proposes a hybrid approach combining threshold-based algorithm and deep learning to detect four major gait events—initial contact (IC), toe-off (TO), opposite initial contact (OIC), and opposite toe-off (OTO)—using only a smartphone's built-in inertial sensor placed in the user's pocket. The algorithm enables estimation of spatiotemporal gait parameters such as cadence, stride length, loading response (LR), pre-swing (PSw), single limb support (SLS), double limb support (DLS), and swing phase and symmetry. Gait data were collected from 20 healthy individuals and 13 hemiparetic stroke patients. To reduce sensitivity to sensor orientation and suppress noise, sum vector magnitude (SVM) features were extracted and filtered using a second-order Butterworth low-pass filter at 3 Hz. A deep learning model was further compressed using knowledge distillation, reducing model size by 96% while preserving accuracy. The proposed method achieved error rates in event detection below 2% of the gait cycle for healthy gait and a maximum of 4.4% for patient gait in event detection, with corresponding parameter estimation errors also within 4%. These results demonstrated the feasibility of accurate and real-time gait monitoring using a smartphone. In addition, statistical analysis of gait parameters such as symmetry and DLS revealed significant differences between the normal and patient groups. While this study is not intended to provide or guide rehabilitation treatment, it offers a practical means to regularly monitor patients' gait status and observe gait recovery trends over time. [ABSTRACT FROM AUTHOR]

Copyright of Sensors (14248220) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)