Treffer: Text mining in MOF research: from manual curation to large language model-based automation.
Weitere Informationen
The rapid expansion of metal–organic framework (MOF) literature presents both a rich resource and a significant challenge for knowledge extraction. Text mining, which enables the conversion of unstructured scientific texts into structured, machine-readable data, has emerged as a key tool for accelerating data-driven research in the MOF domain. This review traces the development of text mining approaches in MOF research, from early manual curation and rule-based methods to recent breakthroughs powered by large language model (LLM)-based automation. We discuss the foundational role of natural language processing (NLP) and machine learning (ML) techniques such as named entity recognition and vector embedding models, followed by an in-depth analysis of LLM-based frameworks that enable flexible, scalable, and context-aware information extraction. Additionally, we introduce and compare their accuracy, and explore their diverse applications—including prediction of synthesizability, materials properties, and thermal stability. We conclude with a perspective on future directions for text mining in MOF research, including its integration into interactive graphical user interfaces, autonomous laboratories, multi-agent AI systems, and multi-modal LLM frameworks that can process textual, visual, and structural information in a unified way. This review aims to provide a foundational understanding for both experimental and computational researchers interested in adopting or advancing text mining methods in the MOF field. [ABSTRACT FROM AUTHOR]
Copyright of Chemical Communications is the property of Royal Society of Chemistry and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)