Treffer: Comparative Study on Energy Consumption of Neural Networks by Scaling of Weight-Memory Energy Versus Computing Energy for Implementing Low-Power Edge Intelligence.

Title:
Comparative Study on Energy Consumption of Neural Networks by Scaling of Weight-Memory Energy Versus Computing Energy for Implementing Low-Power Edge Intelligence.
Source:
Electronics (2079-9292); Jul2025, Vol. 14 Issue 13, p2718, 19p
Database:
Complementary Index

Weitere Informationen

Energy consumption has emerged as a critical design constraint in deploying high-performance neural networks, especially on edge devices with limited power resources. In this paper, a comparative study is conducted for two prevalent deep learning paradigms—convolutional neural networks (CNNs), exemplified by ResNet18, and transformer-based large language models (LLMs), represented by GPT3-small, Llama-7B, and GPT3-175B. By analyzing how the scaling of memory energy versus computing energy affects the energy consumption of neural networks with different batch sizes (1, 4, 8, 16), it is shown that ResNet18 transitions from a memory energy-limited regime at low batch sizes to a computing energy-limited regime at higher batch sizes due to its extensive convolution operations. On the other hand, GPT-like models remain predominantly memory-bound, with large parameter tensors and frequent key–value (KV) cache lookups accounting for most of the total energy usage. Our results reveal that reducing weight-memory energy is particularly effective in transformer architectures, while improving multiply–accumulate (MAC) efficiency significantly benefits CNNs at higher workloads. We further highlight near-memory and in-memory computing approaches as promising strategies to lower data-transfer costs and enhance power efficiency in large-scale deployments. These findings offer actionable insights for architects and system designers aiming to optimize artificial intelligence (AI) performance under stringent energy budgets on battery-powered edge devices. [ABSTRACT FROM AUTHOR]

Copyright of Electronics (2079-9292) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)